On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian

被引:0
|
作者
Morosi, C. [1 ]
Tondo, G. [2 ,3 ]
机构
[1] Dipartimento di Matematica, Politecnico di Milano, Piazza L. Da Vinci 32, I-20133 Milano, Italy
[2] Dept. of Appl. Mathematical Studies, University of Leeds, Leeds LS2 9JT, United Kingdom
[3] Dipartimento di Scienze Matematiche, Univ. degli Studi di Trieste, Piaz.le Europa 1, I-34127 Trieste, Italy
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:59 / 64
相关论文
共 50 条
  • [1] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C
    Tondo, G
    PHYSICS LETTERS A, 1998, 247 (1-2) : 59 - 64
  • [2] Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
    Tondo, G
    Morosi, C
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 255 - 266
  • [3] Quasi-bi-Hamiltonian systems and separability
    Morosi, C
    Tondo, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2799 - 2806
  • [4] Families of quasi-bi-Hamiltonian systems and separability
    Zeng, YB
    Ma, WX
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4452 - 4473
  • [5] Quasi-bi-Hamiltonian systems: Why the pfaffian case?
    Boualem, H.
    Brouzet, R.
    Rakotondralambo, J.
    PHYSICS LETTERS A, 2006, 359 (06) : 559 - 563
  • [6] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R
    Caboz, R
    Rabenivo, J
    Ravoson, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2069 - 2076
  • [7] BI-HAMILTONIAN DYNAMICAL-SYSTEMS AND THE QUADRATIC-HAMILTONIAN THEOREM
    MARMO, G
    SALETAN, EJ
    SCHMID, R
    SIMONI, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (03): : 297 - 317
  • [8] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R.
    Caboz, R.
    Rabenivo, J.
    Ravoson, V.
    Journal of Physics A: Mathematical and General, 29 (09):
  • [9] Projectively Equivalent Riemannian Spaces as Quasi-bi-Hamiltonian Systems
    M. Crampin
    Acta Applicandae Mathematica, 2003, 77 : 237 - 248
  • [10] The quasi-bi-Hamiltonian formulation of the Lagrange top
    Morosi, C
    Tondo, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (07): : 1741 - 1750