A method of global interactions to solve three-dimensional equations for a viscous shock layer

被引:0
|
作者
Borodin, A.I. [1 ]
Pejgin, S.V. [1 ]
机构
[1] NII Prikladnoj Matematiki i, Mekhaniki pri Tomskom, Gosudarstvennom Univ, Tomsk, Russia
来源
Teplofizika Vysokikh Temperatur | 1992年 / 30卷 / 06期
关键词
14;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1124 / 1129
相关论文
共 50 条
  • [41] TENSORIAL EQUATIONS FOR THREE-DIMENSIONAL LAMINAR BOUNDARY LAYER FLOWS
    Storti, M.
    D'Elia, J.
    Battaglia, L.
    LATIN AMERICAN APPLIED RESEARCH, 2011, 41 (01) : 31 - 41
  • [42] The strict method to numerically solve the diffraction problem for a three-dimensional structure
    Knishevskaya, L
    Tamoshiunas, V
    Smertin, O
    Tamoshiuniene, M
    Shugurov, V
    MILLIMETER AND SUBMILLIMETER WAVES IV, 1998, 3465 : 478 - 482
  • [43] THREE-DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD FOR SOLVING NONLINEAR THREE-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS
    Bakhshi, Mehrdad
    Asghari-Larimi, Mohammad
    Asghari-Larimi, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 4 (02): : 246 - 256
  • [44] AN AUGMENTED LAGRANGIAN METHOD TO SOLVE THREE-DIMENSIONAL NONLINEAR CONTACT PROBLEMS
    Cavalieri, F. J.
    Cardona, A.
    LATIN AMERICAN APPLIED RESEARCH, 2012, 42 (03) : 281 - 289
  • [45] Global existence and uniqueness of solutions to the three-dimensional Boussinesq equations
    Liu, Xin
    BOUNDARY VALUE PROBLEMS, 2016,
  • [46] Global existence and uniqueness of solutions to the three-dimensional Boussinesq equations
    Xin Liu
    Boundary Value Problems, 2016
  • [47] Global regularity of the three-dimensional equations for nonhomogeneous incompressible fluids
    Zhang, Peixin
    Zhao, Chong
    Zhang, Jianwen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 : 61 - 76
  • [48] GLOBAL EXISTENCE FOR THE THREE-DIMENSIONAL THERMOELASTIC EQUATIONS OF TYPE II
    Qin, Yuming
    Deng, Shuxian
    Huang, Lan
    Ma, Zhiyong
    Su, Xiaoke
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (02) : 333 - 348
  • [49] Solutions of three-dimensional boundary layer equations by global methods of generalized differential-integral quadrature
    Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
    Int J Numer Methods Heat Fluid Flow, 2 (61-75):
  • [50] Solutions of three-dimensional boundary layer equations by global methods of generalized differential-integral quadrature
    Shu, C
    Chew, YT
    Khoo, BC
    Yeo, KS
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1996, 6 (02) : 61 - 75