Ideal kink instability of a magnetic loop equilibrium

被引:0
|
作者
Török, T. [1 ,2 ]
Kliem, B. [1 ]
Titov, V.S. [3 ]
机构
[1] Astrophysikalisches Institut Potsdam, 14482 Potsdam, Germany
[2] School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
[3] Theoretische Physik IV, Ruhr-Universität Bochum, 44780 Bochum, Germany
来源
Astronomy and Astrophysics | 1600年 / 413卷 / 03期
关键词
Approximation theory - Aspect ratio - Computational methods - Computer simulation - Current density - Kinetic energy - Magnetic fields - Magnetic flux - Magnetohydrodynamics - Numerical methods - Phase shift - Pressure effects - Sun - Surface chemistry - Vortex flow;
D O I
暂无
中图分类号
学科分类号
摘要
The force-free coronal loop model by Titov & Démoulin (1999) is found to be unstable with respect to the ideal kink mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavelength (m = 1) mode grows for average twists θ 3.5π (at a loop aspect ratio of 5). The threshold of instability increases with increasing major loop radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very close to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a vertical current sheet below the apex, which does not occur in the cylindrical approximation.
引用
收藏
相关论文
共 50 条
  • [41] Saturated ideal kink/peeling formations described as three-dimensional magnetohydrodynamic tokamak equilibrium states
    Cooper, W. A.
    Brunetti, D.
    Duval, B. P.
    Faustin, J. M.
    Graves, J. P.
    Kleiner, A.
    Patten, H.
    Pfefferle, D.
    Porte, L.
    Raghunathan, M.
    Reimerdes, H.
    Sauter, O.
    Tran, T. M.
    PHYSICS OF PLASMAS, 2016, 23 (04)
  • [42] Instability of the quiescent state of an ideal conducting medium in a magnetic field
    Yu. G. Gubarev
    S. S. Kovylina
    Journal of Applied Mechanics and Technical Physics, 1999, 40 (2) : 317 - 324
  • [43] The Effect of Loop Curvature on Coronal Loop Kink Oscillations
    Van Doorsselaere, Tom
    Verwichte, Erwin
    Terradas, Jaume
    SPACE SCIENCE REVIEWS, 2009, 149 (1-4) : 299 - 324
  • [44] A 3-D MHD equilibrium description of nonlinearly saturated ideal external kink/peeling structures in tokamaks
    Cooper, W. A.
    Graves, J. P.
    Duval, B. P.
    Porte, L.
    Reimerdes, H.
    Sauter, O.
    Tran, T-M
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [45] The Effect of Loop Curvature on Coronal Loop Kink Oscillations
    Tom Van Doorsselaere
    Erwin Verwichte
    Jaume Terradas
    Space Science Reviews, 2009, 149 : 299 - 324
  • [46] Resonant damping and instability of propagating kink waves in flowing and twisted magnetic flux tubes
    Bahari, K.
    Petrukhin, N. S.
    Ruderman, M. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (01) : 67 - 79
  • [47] Kink instability of a cylindrical current sheet
    Popoudin, S. Yu.
    Artemyev, A. V.
    Malova, Kh. V.
    COSMIC RESEARCH, 2012, 50 (04) : 282 - 292
  • [48] KINK INSTABILITY OF A TOROIDAL PLASMA COLUMN
    SCHUURMAN, W
    BOBELDIJK, C
    PHYSICS LETTERS A, 1970, A 33 (06) : 381 - +
  • [49] ACOUSTIC KINK INSTABILITY IN AN ARGON DISCHARGE
    SCHULZ, M
    INGARD, U
    PHYSICS OF FLUIDS, 1967, 10 (05) : 1031 - &
  • [50] DYNAMICS OF KINK INSTABILITY IN A NONUNIFORM MAGNETOPLASMA
    BHARUTHRAM, R
    SHUKLA, PK
    JOURNAL OF PLASMA PHYSICS, 1987, 38 : 309 - 316