Ideal kink instability of a magnetic loop equilibrium

被引:0
|
作者
Török, T. [1 ,2 ]
Kliem, B. [1 ]
Titov, V.S. [3 ]
机构
[1] Astrophysikalisches Institut Potsdam, 14482 Potsdam, Germany
[2] School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
[3] Theoretische Physik IV, Ruhr-Universität Bochum, 44780 Bochum, Germany
来源
Astronomy and Astrophysics | 1600年 / 413卷 / 03期
关键词
Approximation theory - Aspect ratio - Computational methods - Computer simulation - Current density - Kinetic energy - Magnetic fields - Magnetic flux - Magnetohydrodynamics - Numerical methods - Phase shift - Pressure effects - Sun - Surface chemistry - Vortex flow;
D O I
暂无
中图分类号
学科分类号
摘要
The force-free coronal loop model by Titov & Démoulin (1999) is found to be unstable with respect to the ideal kink mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavelength (m = 1) mode grows for average twists θ 3.5π (at a loop aspect ratio of 5). The threshold of instability increases with increasing major loop radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very close to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a vertical current sheet below the apex, which does not occur in the cylindrical approximation.
引用
收藏
相关论文
共 50 条
  • [31] IDEAL KINK AND COLLISIONLESS TEARING MODES
    HAZELTINE, RD
    MAHAJAN, SM
    ROSS, DW
    STRAUSS, HR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 866 - 867
  • [32] KINK INSTABILITY IN PLANAR FERROMAGNETS
    MAGYARI, E
    THOMAS, H
    PHYSICAL REVIEW B, 1982, 25 (01): : 531 - 533
  • [33] Kink instability in electron magnetohydrodynamics
    Jain, N
    Das, A
    Kaw, P
    PHYSICS OF PLASMAS, 2004, 11 (09) : 4390 - 4398
  • [34] Critical magnetic shear for the tokamak ideal internal kink mode in the ion kinetic regime
    Shi, BR
    Long, YX
    Sui, GF
    Li, JQ
    CHINESE PHYSICS, 2000, 9 (07): : 523 - 527
  • [35] Interplay of Magnetic Reconnection and Current Sheet Kink Instability in the Earth's Magnetotail
    Cozzani, G.
    Alho, M.
    Zaitsev, I.
    Zhou, H.
    Hoilijoki, S.
    Turc, L.
    Grandin, M.
    Horaites, K.
    Battarbee, M.
    Pfau-Kempf, Y.
    Ganse, U.
    Papadakis, K.
    Palmroth, M.
    GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (02)
  • [36] The kink-type instability of toroidal stellar magnetic fields with thermal diffusion
    Ruediger, G.
    Kitchatinov, L. L.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2010, 104 (2-3): : 273 - 285
  • [37] Signatures of secondary collisionless magnetic reconnection driven by kink instability of a flux rope
    Markidis, S.
    Lapenta, G.
    Delzanno, G. L.
    Henri, P.
    Goldman, M. V.
    Newman, D. L.
    Intrator, T.
    Laure, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (06)
  • [38] KINK INSTABILITY IN PLANAR FERROMAGNETS
    MAGYARI, E
    THOMAS, H
    HELVETICA PHYSICA ACTA, 1981, 54 (04): : 651 - 651
  • [39] KINK INSTABILITY IN WIRE ARRAYS
    FELBER, FS
    ROSTOKER, N
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 872 - 872
  • [40] ENERGY PRINCIPLE AND KINK INSTABILITY IN A TOROIDAL PLASMA WITH STRONG MAGNETIC-FIELD
    POGUTSE, OP
    YURCHENKO, EI
    NUCLEAR FUSION, 1978, 18 (12) : 1629 - 1638