Accurate simulation of spontaneous Raman scattering of CO2 for high-temperature diagnostics

被引:1
|
作者
Lill, Johannes [1 ,2 ]
Dreizler, Andreas [2 ]
Magnotti, Gaetano [3 ]
Geyer, Dirk [1 ]
机构
[1] Univ Appl Sci Darmstadt, Dept Mech & Plast Engn, Opt Diagnost & Renewable Energies, Darmstadt, Germany
[2] Tech Univ Darmstadt, Dept Mech Engn React Flows & Diagnost, Darmstadt, Germany
[3] King Abdullah Univ Sci & Technol, Fac Mech Engn, Clean Combust Res Ctr, Thuwal, Saudi Arabia
关键词
Raman spectroscopy; Simulation; Carbon dioxide; Spectral fit; ROTATIONAL LINE POSITIONS; FERMI RESONANCE REGION; CW-CAVITY RINGDOWN; CARBON-DIOXIDE; ISOTOPIC VARIANTS; SPECTRA; INTENSITIES; (CO2)-C-13-O-16; (CO2)-C-12-O-16; SPECTROSCOPY;
D O I
10.1016/j.jqsrt.2024.109223
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a comprehensive simulation approach for the temperature-dependent Raman spectra of CO2, a common product in combustion and reactive environments. Previous studies have typically been limited to isotropic scattering or a restricted number of energy levels. In contrast, our simulation incorporates both isotropic and anisotropic scattering, including all ro-vibrational O, P, Q, R, and S transitions, and extends to all energy levels contained in and up to polyad 30, which our results demonstrate is essential for accurate modeling at high temperatures. The four most prevalent isotopologues 12 C 16 O 2 , 13 C 16 O 2 , 16O12C17O, and 16O12C18O are included, collectively accounting for over 99.99 % of naturally occurring CO2. Polarizability ratios between the v1 and 2 v 2 modes and the isotropic/anisotropic contributions were determined by fitting them to experimental spectra at 296 K. The simulated CO2 spectra demonstrate excellent agreement with experimental data across temperatures up to 2355 K, thereby enhancing the reliability of Raman spectroscopy in various applications involving CO2.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-temperature oxidation of pure titanium in CO2 and Ar-10%CO2 atmospheres
    Kiyoshi Kusabiraki
    Noriaki Kuroda
    Isao Motohira
    Takayuki Ooka
    Oxidation of Metals, 1997, 48 : 289 - 302
  • [42] High-temperature Raman spectroscopic study of CO2-containing melanophlogite
    Kanzaki, Masami
    JOURNAL OF MINERALOGICAL AND PETROLOGICAL SCIENCES, 2019, 114 (03) : 122 - 129
  • [43] High-Temperature CO2 Capture by CaO-Containing Hydroxides
    Chen, Wun-Syong
    Yu, Ching-Tsung
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (08) : 1799 - 1805
  • [44] HIGH-TEMPERATURE WHEEL TEST SIMULATES CO2 CORROSION.
    Garber, James D.
    Perkins, Richard
    Su, Hwei-Yang
    1986, (84):
  • [45] In situ studies of materials for high-temperature CO2 capture and storage
    Dunstan, Matthew T.
    Liu, Wen
    Pavan, Adriano F.
    Maugeri, Serena
    Dove, Martin
    Taiwo, Dami
    Shearing, Paul
    Ling, Chris D.
    Scott, Stuart A.
    Dennis, John S.
    Grey, Clare P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S344 - S344
  • [46] CDSDv: A compact database for the modeling of high-temperature CO2 radiation
    Vargas, Joao
    Lopez, Bruno
    da Silva, Mario Lino
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 245
  • [47] CO2 Heat Pump in High-Temperature District Heating Plant
    Eggen, G.
    Skinnes, K.
    Engen, M.
    Ingebrigtsen, M.
    Smedegard, O. O.
    15TH IIR-GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS, 2022, : 510 - 515
  • [48] Syntheses and structures of lithium zirconates for high-temperature CO2 absorption
    Wang, Shutao
    An, Changhua
    Zhang, Qin-Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) : 3540 - 3550
  • [49] High-Temperature Pressure Swing Adsorption Process for CO2 Separation
    Yin, Junjun
    Qin, Changlei
    An, Hui
    Liu, Wenqiang
    Feng, Bo
    ENERGY & FUELS, 2012, 26 (01) : 169 - 175
  • [50] HIGH-TEMPERATURE ABSORPTION IN CO2 AT 10.6 MU-M
    STRILCHUK, AR
    OFFENBERGER, AA
    APPLIED OPTICS, 1974, 13 (11) : 2643 - 2646