Modeling the melting temperature of semiconductor nanocrystals

被引:0
|
作者
Sheng, Hongchao [1 ]
Xiao, Beibei [2 ]
Jiang, Xiaobao [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Dept Mat Sci & Engn, Zhenjiang 212003, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
关键词
Size effect; Melting temperature; Semiconductor; Nanocrystals; Thermodynamics; SIZE DEPENDENCE; COHESIVE ENERGY; POINT; SHAPE; THERMODYNAMICS; NANOPARTICLES;
D O I
10.1016/j.cplett.2024.141659
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring the thermal stability of semiconductor crystals at the nanoscale is of great significance for the design, fabrication, and application of modern quantum devices. In this paper, we propose a thermodynamic model to predict the melting temperature of semiconductor nanocrystals, which is in good agreement with the experimental results of Si, Bi, CdS, and CdSe. In addition, when the size decreases, the drop of melting temperature curves tends to be synchronized with the size-dependent solid/liquid interface energy and surface stress ratio gamma sl(D)/f(D), which reveals the physical origin of the decrease in the melting temperature of the semiconductor nanocrystals.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Luminescence of Single Semiconductor Nanocrystals at Room Temperature as Observed with Confocal Microscopy
    V. Zakharov
    M. Stepanova
    M. Baranov
    A. Dubavik
    T. Kormilina
    S. Cherevkov
    L. Borodina
    A. Veniaminov
    Optics and Spectroscopy, 2018, 125 : 765 - 768
  • [32] Luminescence of Single Semiconductor Nanocrystals at Room Temperature as Observed with Confocal Microscopy
    Zakharov, V.
    Stepanova, M.
    Baranov, M.
    Dubavik, A.
    Kormilina, T.
    Cherevkov, S.
    Borodina, L.
    Veniaminov, A.
    OPTICS AND SPECTROSCOPY, 2018, 125 (05) : 765 - 768
  • [33] A transient Modeling about temperature changes in a melting chamber of a pyrolysis melting incinerator
    Kim, Bong Keun
    Yang, Won
    Yu, TaeU
    Jeon, Keum Ha
    CHALLENGES OF POWER ENGINEERING AND ENVIRONMENT, VOLS 1 AND 2, 2007, : 1112 - +
  • [34] Band Gap Tunability in Semiconductor Nanocrystals by Strain: Size and Temperature Effect
    Zhu, Ziming
    Zhang, Ai
    Ouyang, Gang
    Yang, Guowei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14): : 6462 - 6466
  • [35] Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting
    Saprykin, A. A.
    Ibragimov, E. A.
    Babakova, E. V.
    VII INTERNATIONAL SCIENTIFIC PRACTICAL CONFERENCE INNOVATIVE TECHNOLOGIES IN ENGINEERING, 2016, 142
  • [36] Circuit modeling of the effect of temperature on semiconductor lasers
    Madhan, MG
    Gunasekaran, N
    Vaya, PR
    PHYSICS OF SEMICONDUCTOR DEVICES, VOLS 1 AND 2, 1998, 3316 : 177 - 183
  • [37] Temperature Distribution and Discharge Modeling of a Semiconductor Bridge
    Liu, Mingfang
    Zhang, Xiaobing
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (01) : 16 - 21
  • [38] Perovskite Semiconductor Nanocrystals
    Manna, Liberato
    Bakr, Osman M.
    Brovelli, Sergio
    Li, Hongbo
    ENERGY MATERIAL ADVANCES, 2022, 2022
  • [39] Semiconductor Nanomaterials and Nanocrystals
    Stetsyk, N. V.
    Antonyuk, V. G.
    Rudka, M. M.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2015, 7 (02)
  • [40] Metal and Semiconductor Nanocrystals
    Zhao, Jing
    Chen, Ou
    He, Jie
    Zou, Shengli
    FRONTIERS IN CHEMISTRY, 2019, 7