Pseudomodes of Schrödinger operators

被引:0
|
作者
Krejcirik, David [1 ]
Siegl, Petr [2 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague, Czech Republic
[2] Graz Univ Technol, Inst Appl Math, Graz, Austria
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
pseudospectrum; non-self-adjointness; Schr & ouml; dinger operators; complex potentials; WKB method; HARMONIC-OSCILLATOR; PSEUDOSPECTRA; SPECTRA;
D O I
10.3389/fphy.2024.1479658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pseudomodes of non-self-adjoint Schr & ouml;dinger operators corresponding to large pseudoeigenvalues are constructed. The approach is non-semiclassical and extendable to other types of models including the damped wave equation and Dirac operators.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] The Morse and Maslov indices for Schrödinger operators
    Yuri Latushkin
    Selim Sukhtaiev
    Alim Sukhtayev
    Journal d'Analyse Mathématique, 2018, 135 : 345 - 387
  • [42] Lp estimates for the Schrödinger type operators
    Yu Liu
    Ji-zheng Huang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 412 - 424
  • [43] Dissipative Schrödinger Operators with Matrix Potentials
    B.P. Allahverdiev
    Potential Analysis, 2004, 20 : 303 - 315
  • [44] Inverse Spectral Problems for Schrödinger Operators
    Hamid Hezari
    Communications in Mathematical Physics, 2009, 288 : 1061 - 1088
  • [45] On the Structure of Singularities of Integrable Schrödinger Operators
    Yuri Berest
    Alexander Veselov
    Letters in Mathematical Physics, 2000, 52 : 103 - 111
  • [46] Hierarchical Schrödinger Operators with Singular Potentials
    Bendikov, Alexander
    Grigor'yan, Alexander
    Molchanov, Stanislav
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 12 - 46
  • [47] Lp estimates for the Schrdinger type operators
    LIU Yu1 HUANG Ji-zheng2 1 School of Mathematics and Physics
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 412 - 424
  • [48] Maximal Schrödinger operators with complex time
    Yaoming Niu
    Ying Xue
    Annals of Functional Analysis, 2020, 11 : 662 - 679
  • [49] Schrödinger Operators with Few Bound States
    David Damanik
    Rowan Killip
    Barry Simon
    Communications in Mathematical Physics, 2005, 258 : 741 - 750
  • [50] Tunneling Estimates for Magnetic Schrödinger Operators
    Shu Nakamura
    Communications in Mathematical Physics, 1999, 200 : 25 - 34