Pseudomodes of Schrödinger operators

被引:0
|
作者
Krejcirik, David [1 ]
Siegl, Petr [2 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague, Czech Republic
[2] Graz Univ Technol, Inst Appl Math, Graz, Austria
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
pseudospectrum; non-self-adjointness; Schr & ouml; dinger operators; complex potentials; WKB method; HARMONIC-OSCILLATOR; PSEUDOSPECTRA; SPECTRA;
D O I
10.3389/fphy.2024.1479658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pseudomodes of non-self-adjoint Schr & ouml;dinger operators corresponding to large pseudoeigenvalues are constructed. The approach is non-semiclassical and extendable to other types of models including the damped wave equation and Dirac operators.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] On Minimal Eigenvalues¶of Schrödinger Operators on Manifolds
    Pedro Freitas
    Communications in Mathematical Physics, 2001, 217 : 375 - 382
  • [22] Trace Formulas for Schrödinger Operators on a Lattice
    E. L. Korotyaev
    Russian Journal of Mathematical Physics, 2022, 29 : 542 - 557
  • [23] Improved energy bounds for Schrödinger operators
    Lorenzo Brasco
    Giuseppe Buttazzo
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 977 - 1014
  • [24] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    Communications in Mathematical Physics, 2010, 295 : 465 - 484
  • [25] SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS
    魏磊
    段志文
    Acta Mathematica Scientia, 2024, 44 (06) : 2391 - 2410
  • [26] Bounds on the density of states for Schrödinger operators
    Jean Bourgain
    Abel Klein
    Inventiones mathematicae, 2013, 194 : 41 - 72
  • [27] Spectral instability for some Schrödinger operators
    A. Aslanyan
    E.B. Davies
    Numerische Mathematik, 2000, 85 : 525 - 552
  • [28] Schrödinger Operators with δ and δ′-Potentials Supported on Hypersurfaces
    Jussi Behrndt
    Matthias Langer
    Vladimir Lotoreichik
    Annales Henri Poincaré, 2013, 14 : 385 - 423
  • [29] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [30] Nonlinear Schrödinger operators with zero in the spectrum
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2125 - 2141