Development and realization of lithium-ion battery modules for starting applications and traction of off-road electric vehicles

被引:0
|
作者
机构
[1] Vellucci, Francesco
[2] Pede, Giovanni
[3] D'Annibale, Francesco
[4] Mariani, Andrea
[5] Roncella, Roberto
[6] Saletti, Roberto
[7] Baronti, Federico
[8] Fantechi, Gabriele
关键词
Lithium compounds - Battery management systems - Lithium-ion batteries - Off road vehicles - Temperature control - Roads and streets - Electric traction - Silicate minerals - Thermal management (electronics);
D O I
10.3390/wevj6030562
中图分类号
学科分类号
摘要
The paper describes the development and realization of standard battery modules 12 V, made by LiFePO4 cells selected in a previous study by ENEA and the University of Pisa. Module means the group of four cells series connected, the electronic battery management system, the thermal management system and the mechanical case. Standard means that the same battery module can be used for different applications: in fact, the previous study showed that three standard battery modules, 30 Ah (little size), 60 Ah (medium size) and 100 Ah (large size), are sufficient to reach the levels of voltage/capacity requested by the most part of the applications in the field of the starting/auxiliary supply batteries (also for the nautical sector) and traction of off-road electric vehicles. More units of standard modules can be series/parallel connected to build complete battery systems able to satisfy the required performances. The development and realization of the modules mostly consisted of testing the selected cells to verify their suitability for the above mentioned applications, to make a thermal battery characterization so to define the thermal management system, to develop an electronic battery management system and to build a mechanical case. The paper shows all these aspects in detail.
引用
收藏
相关论文
共 50 条
  • [41] Experimental Study of Lithium-ion Battery Thermal Behaviour for Electric and Hybrid Electric Vehicles
    Che Daud, Zul Hilmi
    Chrenko, Daniela
    Aglzim, El-Hassane
    Keromnes, Alan
    Le Moyne, Luis
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,
  • [42] Thermal runaway behaviors of lithium-ion battery for electric vehicles: Experimental and modeling studies with realistic applications to a battery pack
    Wu, Jun
    Zhang, Xiong
    Chen, Hu
    Guo, Wei
    Yao, Jian
    Wei, Dan
    Zhu, Linpei
    Ouyang, Chenzhi
    Wang, Qingquan
    Hu, Qianqian
    Jin, Changyong
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [43] Traction Control Development for Heavy-Duty Off-Road Vehicles Using Sliding Mode Control
    Alexander, Addison
    Vacca, Andrea
    INTERNATIONAL JOURNAL OF FLUID POWER, 2019, 20 (03) : 375 - 399
  • [44] Review of Thermal Runaway and Safety Management for Lithium-ion Traction Batteries in Electric Vehicles
    Zhu X.
    Wang Z.
    Wang H.
    Wang C.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (14): : 91 - 118
  • [45] Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil
    João Pinto Cabral-Neto
    Rejane Magalhães de Mendonça Pimentel
    Simone Machado Santos
    Maísa Mendonça Silva
    Environmental Science and Pollution Research, 2023, 30 : 23070 - 23078
  • [46] A future perspective on lithium-ion battery waste flows from electric vehicles
    Richa, Kirti
    Babbitt, Callie W.
    Gaustad, Gabrielle
    Wang, Xue
    RESOURCES CONSERVATION AND RECYCLING, 2014, 83 : 63 - 76
  • [47] Modeling, simulation, and parameters identification of a lithium-ion battery used in electric vehicles
    Haghjoo, Yasaman
    Khaburi, Davood Arab
    2022 9TH IRANIAN CONFERENCE ON RENEWABLE ENERGY & DISTRIBUTED GENERATION (ICREDG), 2022,
  • [48] A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles
    Hua, Yang
    Zhou, Sida
    Cui, Haigang
    Liu, Xinhua
    Zhang, Cheng
    Xu, Xingwu
    Ling, Heping
    Yang, Shichun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11059 - 11087
  • [49] An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles
    Ding, Xiaofeng
    Zhang, Donghuai
    Cheng, Jiawei
    Wang, Binbin
    Luk, Patrick Chi Kwong
    APPLIED ENERGY, 2019, 254
  • [50] Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil
    Cabral-Neto, Joao Pinto
    de Mendonca Pimentel, Rejane Magalhaes
    Santos, Simone Machado
    Silva, Maisa Mendonca
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (09) : 23070 - 23078