Development and realization of lithium-ion battery modules for starting applications and traction of off-road electric vehicles

被引:0
|
作者
机构
[1] Vellucci, Francesco
[2] Pede, Giovanni
[3] D'Annibale, Francesco
[4] Mariani, Andrea
[5] Roncella, Roberto
[6] Saletti, Roberto
[7] Baronti, Federico
[8] Fantechi, Gabriele
关键词
Lithium compounds - Battery management systems - Lithium-ion batteries - Off road vehicles - Temperature control - Roads and streets - Electric traction - Silicate minerals - Thermal management (electronics);
D O I
10.3390/wevj6030562
中图分类号
学科分类号
摘要
The paper describes the development and realization of standard battery modules 12 V, made by LiFePO4 cells selected in a previous study by ENEA and the University of Pisa. Module means the group of four cells series connected, the electronic battery management system, the thermal management system and the mechanical case. Standard means that the same battery module can be used for different applications: in fact, the previous study showed that three standard battery modules, 30 Ah (little size), 60 Ah (medium size) and 100 Ah (large size), are sufficient to reach the levels of voltage/capacity requested by the most part of the applications in the field of the starting/auxiliary supply batteries (also for the nautical sector) and traction of off-road electric vehicles. More units of standard modules can be series/parallel connected to build complete battery systems able to satisfy the required performances. The development and realization of the modules mostly consisted of testing the selected cells to verify their suitability for the above mentioned applications, to make a thermal battery characterization so to define the thermal management system, to develop an electronic battery management system and to build a mechanical case. The paper shows all these aspects in detail.
引用
收藏
相关论文
共 50 条
  • [31] Intelligent temperature control framework of lithium-ion battery for electric vehicles
    Zhou, Lin
    Garg, Akhil
    Li, Wei
    Gao, Liang
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [32] Computer simulation of lithium-ion battery performance in hybrid electric vehicles
    Nelson, PA
    Henriksen, GL
    Amine, K
    POWER SOURCES FOR THE NEW MILLENNIUM, PROCEEDINGS, 2001, 2000 (22): : 245 - 256
  • [33] Survey of Lithium-Ion Battery Anomaly Detection Methods in Electric Vehicles
    Li, Xuyuan
    Wang, Qiang
    Xu, Chen
    Wu, Yiyang
    Li, Lianxing
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4189 - 4201
  • [34] Research on equivalent circuit Model of Lithium-ion battery for electric vehicles
    Huang, Kaifeng
    Wang, Yong
    Feng, Juqiang
    2020 3RD WORLD CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT MANUFACTURING (WCMEIM 2020), 2020, : 492 - 496
  • [35] Modeling and remaining capacity estimation of lithium-ion battery for electric vehicles
    Chen, Kunhua
    Sun, Yukun
    Li, Tianbo
    Sun, Zhiquan
    Qiche Gongcheng/Automotive Engineering, 2014, 36 (04): : 404 - 408
  • [36] Recycling of End-of-Life Lithium-Ion Battery of Electric Vehicles
    Chan, Ka Ho
    Malik, Monu
    Anawati, John
    Azimi, Gisele
    RARE METAL TECHNOLOGY 2020, 2020, : 23 - 32
  • [37] A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles
    Zou, Bosong
    Zhang, Lisheng
    Xue, Xiaoqing
    Tan, Rui
    Jiang, Pengchang
    Ma, Bin
    Song, Zehua
    Hua, Wei
    ENERGIES, 2023, 16 (14)
  • [38] A New SOH Prediction Model for Lithium-ion Battery for Electric Vehicles
    Han, Huachun
    Xu, Haiping
    Yuan, Zengquan
    Shen, Yanling
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 997 - 1002
  • [39] Lithium-Ion Battery Management System: A Lifecycle Evaluation Model for the Use in the Development of Electric Vehicles
    Sisodia, Ayush
    Monteiro, Jonathan
    INTERNATIONAL CONFERENCE ON RESEARCH IN MECHANICAL ENGINEERING SCIENCES (RIMES 2017), 2018, 144
  • [40] A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond
    Chen, Weidong
    Liang, Jun
    Yang, Zhaohua
    Li, Gen
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4363 - 4368