Cathode sputtering and the resulting formation of carbon nanometer-size dust

被引:0
|
作者
Dominique, C. [1 ]
Arnas, C. [1 ]
机构
[1] Laboratoire de Physique des Interactions Ioniques et Moĺculaires, UMR 6633 CNRS-Universit´ Aix-Marseille, Centre de St J´rôme, case 321, F-13397 Marseille, France
来源
Journal of Applied Physics | 2007年 / 101卷 / 12期
关键词
Nanometer-size particles are produced in parallel electrode glow discharges. Supersaturated carbon vapor produced by the sputtering of a graphite cathode is at the origin of their formation. In this context; the energy distribution and the flux of the sputtering particles are estimated. The energy distribution of the emitted carbon atoms is also evaluated as a function of the distance to the cathode; taking into account the collisions with the discharge gas atoms. These collisions induce the carbon vapor cooling and then; a nucleation-condensation phase giving rise to dust precursor clusters. A linear scaling law of growth is established experimentally as a function of time when the dust size is higher than 20 nm. Within the considered time range; this scaling law shows that the growth comes from neutral deposition on the dust surface. © 2007 American Institute of Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [31] EVANESCENT LUMINESCENCE AND NANOMETER-SIZE LIGHT-SOURCE
    KOPELMAN, R
    LIEBERMAN, K
    LEWIS, A
    TAN, W
    JOURNAL OF LUMINESCENCE, 1991, 48-9 : 871 - 875
  • [32] Enhancement of Kondo temperature in nanometer-size point contacts
    Yanson, IK
    Fisun, VV
    Mydosh, JA
    van Ruitenbeek, JM
    KONDO EFFECT AND DEPHASING IN LOW-DIMENSIONAL METALLIC SYSTEMS, 2001, 50 : 73 - 85
  • [33] Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice
    Akiba, Hiroshi
    Kofu, Maiko
    Kobayashi, Hirokazu
    Kitagawa, Hiroshi
    Ikeda, Kazutaka
    Otomo, Toshiya
    Yamamuro, Osamu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (32) : 10238 - 10243
  • [34] QUANTUM CONFINEMENT IN SEMICONDUCTOR HETEROSTRUCTURE NANOMETER-SIZE PARTICLES
    HAUS, JW
    ZHOU, HS
    HONMA, I
    KOMIYAMA, H
    PHYSICAL REVIEW B, 1993, 47 (03): : 1359 - 1365
  • [35] FILTRATION EFFICIENCY OF NANOMETER-SIZE AEROSOL-PARTICLES
    WANG, HC
    KASPER, G
    JOURNAL OF AEROSOL SCIENCE, 1991, 22 (01) : 31 - 41
  • [36] Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery
    Youn, Yong
    Gao, Bo
    Kamiyama, Azusa
    Kubota, Kei
    Komaba, Shinichi
    Tateyama, Yoshitaka
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [37] Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery
    Yong Youn
    Bo Gao
    Azusa Kamiyama
    Kei Kubota
    Shinichi Komaba
    Yoshitaka Tateyama
    npj Computational Materials, 7
  • [38] ON THE ORIGIN OF VISIBLE PHOTOLUMINESCENCE IN NANOMETER-SIZE GE CRYSTALLITES
    KANEMITSU, Y
    UTO, H
    MASUMOTO, Y
    MAEDA, Y
    APPLIED PHYSICS LETTERS, 1992, 61 (18) : 2187 - 2189
  • [39] A NOVEL LEAD TITANATE MICROPOROUS CRYSTAL WITH NANOMETER-SIZE
    GUO, YH
    QIU, SL
    PANG, WQ
    OHNISHI, N
    HIRAGA, K
    ZEOLITES AND RELATED MICROPOROUS MATERIALS: STATE OF THE ART 1994, 1994, 84 : 251 - 258
  • [40] Radiative Heat Transfer across Nanometer-size Gaps
    Fernandez-Hurtado, V.
    Kim, K.
    Song, B.
    Lee, W.
    Jeong, W.
    Cui, L.
    Thompson, D.
    Feist, J.
    Reid, M. T. H.
    Garcia-Vidal, F. J.
    Cuevas, J. C.
    Meyhofer, E.
    Reddy, P.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 1563 - 1563