Classification and analysis of simple pendulum using artificial neural network approach

被引:0
|
作者
Wadhwa, Adya [1 ]
Wadhwa, Ajay [2 ]
机构
[1] GGS Indraprastha Univ EDC, Univ Sch Automat & Robot, AI & ML, New Delhi, India
[2] Univ Delhi, SGTB Khalsa Coll, Dept Phys, New Delhi, India
关键词
simple pendulum; neural network; machine learning; damping coefficient; SGD algorithm;
D O I
10.1088/1361-6404/ad79cb
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We describe an artificial neural network (ANN) for analyzing damped oscillations in a simple pendulum system by using a machine learning (ML) algorithm. We have first shown how to construct a simple ANN consisting of three layers-input, hidden and output, with each layer being composed of neurons representing a relevant feature of the oscillating pendulum. The train and test datasets for the ANN have been taken from the experimental data collected by using the methodology of a previously communicated work. A ML optimization algorithm called stochastic gradient descent has been employed in the neural network to predict the type of pendulum according to the values of the mass, size and damping coefficient of the pendulum.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Classification of heart sounds using an artificial neural network
    Ölmez, T
    Dokur, Z
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 617 - 629
  • [32] Image Classification of Canaries Using Artificial Neural Network
    Yanuki, Bagus
    Rahman, Aviv Yuniar
    Istiadi
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [33] Ripeness Classification of Bananas Using an Artificial Neural Network
    Fatma M. A. Mazen
    Ahmed A. Nashat
    Arabian Journal for Science and Engineering, 2019, 44 : 6901 - 6910
  • [34] AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
    Chady, T.
    Caryk, M.
    Piekarczyk, B.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 28A AND 28B, 2009, 1096 : 1591 - 1598
  • [35] Automatic text classification using an artificial neural network
    de Mello, RF
    Senger, LJ
    Yang, LT
    HIGH PERFORMANCE COMPUTATIONAL SCIENCE AND ENGINEERING, 2004, 172 : 215 - +
  • [36] LEAF DISEASE CLASSIFICATION USING ARTIFICIAL NEURAL NETWORK
    Ishak, Syafiqah
    Rahiman, Mohd Hafiz Fazalul
    Kanafiah, Siti Nurul Aqmariah Mohd
    Saad, Hashim
    JURNAL TEKNOLOGI, 2015, 77 (17): : 109 - 114
  • [37] Wood Defects Classification Using Artificial Neural Network
    de Jesus Ramirez Alonso, Graciela Maria
    Chacon Murguia, Mario Ignacio
    COMPUTACION Y SISTEMAS, 2005, 9 (01): : 17 - 27
  • [38] Classification of heart abnormalities using artificial neural network
    Saad, Mohd Hanif Md
    Nor, Mohd Jailani Mohd
    Bustami, Fadzlul Rahimi Ahmad
    Ngadiran, Ruzelita
    Journal of Applied Sciences, 2007, 7 (06) : 820 - 825
  • [39] CLASSIFICATION OF RIVER BASINS USING ARTIFICIAL NEURAL NETWORK
    Thandaveswara, B. S.
    Sajikumar, N.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (03) : 290 - 298
  • [40] Ripeness Classification of Bananas Using an Artificial Neural Network
    Mazen, Fatma M. A.
    Nashat, Ahmed A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (08) : 6901 - 6910