Classification and analysis of simple pendulum using artificial neural network approach

被引:0
|
作者
Wadhwa, Adya [1 ]
Wadhwa, Ajay [2 ]
机构
[1] GGS Indraprastha Univ EDC, Univ Sch Automat & Robot, AI & ML, New Delhi, India
[2] Univ Delhi, SGTB Khalsa Coll, Dept Phys, New Delhi, India
关键词
simple pendulum; neural network; machine learning; damping coefficient; SGD algorithm;
D O I
10.1088/1361-6404/ad79cb
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We describe an artificial neural network (ANN) for analyzing damped oscillations in a simple pendulum system by using a machine learning (ML) algorithm. We have first shown how to construct a simple ANN consisting of three layers-input, hidden and output, with each layer being composed of neurons representing a relevant feature of the oscillating pendulum. The train and test datasets for the ANN have been taken from the experimental data collected by using the methodology of a previously communicated work. A ML optimization algorithm called stochastic gradient descent has been employed in the neural network to predict the type of pendulum according to the values of the mass, size and damping coefficient of the pendulum.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Automatic Detection and Classification of Hearing Loss Conditions Using an Artificial Neural Network Approach
    Mosqueda Cardenas, Edgar
    de la Rosa Gutierrez, Jose P.
    Aguilar Lobo, Lina Maria
    Ochoa Ruiz, Gilberto
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 227 - 237
  • [22] Classification of Galaxy Morphologies using Artificial Neural Network
    Biswas, Manish
    Adlak, Ritesh
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [23] Classification of Breast Abnormalities Using Artificial Neural Network
    Zaman, Nur Atiqah Kamarul
    Rahman, Wan Eny Zarina Wan Abdul
    Jumaat, Abdul Kadir
    Yasiran, Siti Salmah
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [24] Classification of breast lesions using artificial neural network
    Mashor, M. Y.
    Esugasini, S.
    Isa, N. A. Mat
    Othman, N. H.
    3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006, 2007, 15 : 45 - +
  • [25] Facial Classification using Artificial Neural Network Techniques
    Nor'aini, A. J.
    Fatimah, Z.
    Norzilah, R.
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [26] Epilepsy classification using optimized artificial neural network
    Saini, Jagriti
    Dutta, Maitreyee
    NEUROLOGICAL RESEARCH, 2018, 40 (11) : 982 - 994
  • [27] Classification of Robotic Data using Artificial Neural Network
    Gopalapillai, Radhakrishnan
    Vidhya, J.
    Gupta, Deepa
    Sudarshan, T. S. B.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 333 - 337
  • [28] Classification of Stress Recognition using Artificial Neural Network
    Alic, Berina
    Sejdinovic, Dijana
    Gurbeta, Lejla
    Badnjevic, Almir
    2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 297 - 300
  • [29] Classification of respiratory sounds by using an artificial neural network
    Dokur, Z
    Ölmez, T
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (04) : 567 - 580
  • [30] Classification of psychiatric disorders using artificial neural network
    Bashyal, S
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 796 - 800