A NEWTON METHOD FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH FINITE UNCERTAINTY SETS

被引:0
|
作者
Ghosh, Debdas [1 ]
Kishor, Nand [1 ]
Zhao, Xiaopeng [2 ]
机构
[1] Department of Mathematical Sciences, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi,221005, India
[2] School of Mathematical Sciences, Tiangong University, Tianjin,300387, China
关键词
Functionals - Gerstewitz functional - Newton's methods - Newton’s method - Ordering relations - Partition sets - S-method - Set optimizations - Uncertain optimizations - Upper set order relation;
D O I
暂无
中图分类号
学科分类号
摘要
35
引用
收藏
相关论文
共 50 条
  • [21] PROXIMAL QUASI-NEWTON METHODS FOR THE COMPOSITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Peng, Jianwen
    Ren, Jie
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (01) : 207 - 221
  • [22] QUASI-NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS: A SYSTEMATIC REVIEW
    Kumar K.
    Ghosh D.
    Upadhayay A.
    Yao J.C.
    Zhao X.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 291 - 321
  • [23] Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems
    Helfrich, Stephan
    Ruzika, Stefan
    Thielen, Clemens
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [24] Uncertainty and method choice in discrete multiobjective programming problems
    Fskandari, A.
    Feolliott, P.
    Szidarovszky, F.
    Applied Mathematics and Computation (New York), 1995, 69 (2-3):
  • [25] Solving multiobjective optimization problems with decision uncertainty: an interactive approach
    Zhou-Kangas Y.
    Miettinen K.
    Sindhya K.
    Journal of Business Economics, 2019, 89 (1) : 25 - 51
  • [26] On the Newton method for solving fuzzy optimization problems
    Chalco-Cano, Y.
    Silva, G. N.
    Rufian-Lizana, A.
    FUZZY SETS AND SYSTEMS, 2015, 272 : 60 - 69
  • [27] NEWTON'S METHOD FOR INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION PROBLEM
    Upadhyay, Balendu bhooshan
    Pandey, Rupesh krishna
    Liao, Shanli
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (04) : 1633 - 1661
  • [28] A Nonmonotone Projected Gradient Method for Multiobjective Problems on Convex Sets
    Anibal Carrizo, Gabrie
    Fazzio, Nadia Soledad
    Schuverdt, Maria Laura
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 410 - 427
  • [29] A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization
    Prudente, L. F.
    Souza, D. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1107 - 1140
  • [30] A Nonmonotone Projected Gradient Method for Multiobjective Problems on Convex Sets
    Gabrie Aníbal Carrizo
    Nadia Soledad Fazzio
    María Laura Schuverdt
    Journal of the Operations Research Society of China, 2024, 12 : 410 - 427