QUASI-NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS: A SYSTEMATIC REVIEW

被引:0
|
作者
Kumar K. [1 ]
Ghosh D. [1 ]
Upadhayay A. [1 ,2 ]
Yao J.C. [3 ]
Zhao X. [4 ]
机构
[1] Department of Mathematics, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi
[2] Department of Mathematics, Bareilly College, Uttar Pradesh, Bareilly
[3] Centre for General Education, China Medical University, Taichung
[4] School of Mathematical Sciences, Tiangong University, Tianjin
来源
基金
中国国家自然科学基金;
关键词
BFGS; H-BFGS; Multiobjective optimization; Performance profiles; Quasi-Newton method; SS-BFGS;
D O I
10.23952/asvao.5.2023.2.12
中图分类号
学科分类号
摘要
Quasi-Newton method is one of the most popular methods for solving unconstrained single and multiobjective optimization problems. In a quasi-Newton method, the search direction is computed based on a quadratic model of the objective function, where some approximations replace the true Hessian at each iteration. Several Hessian approximation schemes with an adequate line search technique provided higher-order accuracies in approximating the curvature and made the methods more effective in terms of convergence to solution. Considering the aforementioned reasons, we write a survey on quasi-Newton methods for multiobjective optimization problems. We discuss the development of all the variants of the quasi-Newton method for multiobjective optimization problems, along with some of the advantages and disadvantages of the existing methods. We give a brief discussion about the line search for these variants too. Two cases have been considered for BFGS, Huang BFGS, and self-scaling BFGS multiobjective versions of quasi-Newton methods: one is in the presence of the Armijo line search, and the other is in the absence of any line search. Subsequently, a nonmonotone line search version is also explained for multiobjective optimization problems. Commentary is given on the convergence properties of these methods. The rate of convergence of all these methods is highlighted. To prove the convergence of every method, it is reported that every sequence of points generated from the method converges to a critical point of the multiobjective optimization problem under some mild assumptions. Based on the available numerical data, we provide an unbiased opinion on the effectiveness of quasi-Newton methods for multiobjective optimization problems. © 2023 Authors. All rights reserved.
引用
收藏
页码:291 / 321
页数:30
相关论文
共 50 条
  • [1] Quasi-Newton methods for multiobjective optimization problems
    Morovati, Vahid
    Basirzadeh, Hadi
    Pourkarimi, Latif
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2018, 16 (03): : 261 - 294
  • [2] Quasi-Newton methods for multiobjective optimization problems
    Vahid Morovati
    Hadi Basirzadeh
    Latif Pourkarimi
    4OR, 2018, 16 : 261 - 294
  • [3] PROXIMAL QUASI-NEWTON METHODS FOR THE COMPOSITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Peng, Jianwen
    Ren, Jie
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (01) : 207 - 221
  • [4] Quasi-Newton methods for solving multiobjective optimization
    Qu, Shaojian
    Goh, Mark
    Chan, Felix T. S.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 397 - 399
  • [5] THE QUASI-NEWTON METHOD FOR THE COMPOSITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Peng, Jianwen
    Zhang, Xue-Qing
    Zhang, Tao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2557 - 2569
  • [6] Nonmonotone Wolfe-type quasi-Newton methods for multiobjective optimization problems
    Upadhayay, Ashutosh
    Ghosh, Debdas
    Kumar, Krishan
    OPTIMIZATION, 2025,
  • [7] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    Annals of Operations Research, 2001, 103 : 213 - 234
  • [8] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [9] A family of quasi-Newton methods for unconstrained optimization problems
    Salim, M. S.
    Ahmed, A. I.
    OPTIMIZATION, 2018, 67 (10) : 1717 - 1727
  • [10] New quasi-Newton methods for unconstrained optimization problems
    Wei, Zengxin
    Li, Guoyin
    Qi, Liqun
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 1156 - 1188