Cross Attention-Based Multi-Scale Convolutional Fusion Network for Hyperspectral and LiDAR Joint Classification

被引:0
|
作者
Ge, Haimiao [1 ,2 ]
Wang, Liguo [3 ]
Pan, Haizhu [1 ,2 ]
Liu, Yanzhong [1 ,2 ]
Li, Cheng [1 ,2 ]
Lv, Dan [1 ,2 ]
Ma, Huiyu [1 ,2 ]
机构
[1] Qiqihar Univ, Coll Comp & Control Engn, Qiqihar 161000, Peoples R China
[2] Qiqihar Univ, Heilongjiang Key Lab Big Data Network Secur Detect, Qiqihar 161000, Peoples R China
[3] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
基金
中国国家自然科学基金;
关键词
HSI and LiDAR fusion classification; convolutional neural network; multi-scale feature extraction; cross attention;
D O I
10.3390/rs16214073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, deep learning-based multi-source data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, has gained significant attention in the field of remote sensing. However, the traditional convolutional neural network fusion techniques always provide poor extraction of discriminative spatial-spectral features from diversified land covers and overlook the correlation and complementarity between different data sources. Furthermore, the mere act of stacking multi-source feature embeddings fails to represent the deep semantic relationships among them. In this paper, we propose a cross attention-based multi-scale convolutional fusion network for HSI-LiDAR joint classification. It contains three major modules: spatial-elevation-spectral convolutional feature extraction module (SESM), cross attention fusion module (CAFM), and classification module. In the SESM, improved multi-scale convolutional blocks are utilized to extract features from HSI and LiDAR to ensure discriminability and comprehensiveness in diversified land cover conditions. Spatial and spectral pseudo-3D convolutions, pointwise convolutions, residual aggregation, one-shot aggregation, and parameter-sharing techniques are implemented in the module. In the CAFM, a self-designed local-global cross attention block is utilized to collect and integrate relationships of the feature embeddings and generate joint semantic representations. In the classification module, average polling, dropout, and linear layers are used to map the fused semantic representations to the final classification results. The experimental evaluations on three public HSI-LiDAR datasets demonstrate the competitiveness of the proposed network in comparison with state-of-the-art methods.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion
    Li, Fuquan
    Zhou, Yonghui
    Chen, YanLi
    Li, Jie
    Dong, ZhiCheng
    Tan, Mian
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 705 - 719
  • [42] Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion
    Fuquan Li
    Yonghui Zhou
    YanLi Chen
    Jie Li
    ZhiCheng Dong
    Mian Tan
    Complex & Intelligent Systems, 2024, 10 : 705 - 719
  • [43] A Multi-scale Convolutional Neural Network Based on Multilevel Wavelet Decomposition for Hyperspectral Image Classification
    Yang C.
    Song D.
    Wang B.
    Tang Y.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13536 LNCS : 484 - 496
  • [44] MULTI-SCALE DILATED RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pooja, Kumari
    Nidamanuri, Rama Rao
    Mishra, Deepak
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [45] JAMSNet: A Remote Pulse Extraction Network Based on Joint Attention and Multi-Scale Fusion
    Zhao, Changchen
    Wang, Hongsheng
    Chen, Huiling
    Shi, Weiwei
    Feng, Yuanjing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (06) : 2783 - 2797
  • [46] JAMFN: Joint Attention Multi-Scale Fusion Network for Depression Detection
    Zhou, Li
    Liu, Zhenyu
    Shangguan, Zixuan
    Yuan, Xiaoyan
    Li, Yutong
    Hu, Bin
    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2023, 2023-August : 3417 - 3421
  • [47] JAMFN: Joint Attention Multi-Scale Fusion Network for Depression Detection
    Zhou, Li
    Liu, Zhenyu
    Shangguan, Zixuan
    Yuan, Xiaoyan
    Li, Yutong
    Hu, Bin
    INTERSPEECH 2023, 2023, : 3417 - 3421
  • [48] A novel graph-attention based multimodal fusion network for joint classification of hyperspectral image and LiDAR data
    Cai, Jianghui
    Zhang, Min
    Yang, Haifeng
    He, Yanting
    Yang, Yuqing
    Shi, Chenhui
    Zhao, Xujun
    Xun, Yaling
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [49] Multi-scale attention-based adaptive feature fusion network for fine-grained ship classification in remote sensing scenarios
    Liu, Kun
    Zhang, Xiaomeng
    Xu, Zhijing
    Liu, Sidong
    Journal of Applied Remote Sensing, 1600, 18 (03):
  • [50] Multi-scale attention-based adaptive feature fusion network for fine-grained ship classification in remote sensing scenarios
    Liu, Kun
    Zhang, Xiaomeng
    Xu, Zhijing
    Liu, Sidong
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)