Cross Attention-Based Multi-Scale Convolutional Fusion Network for Hyperspectral and LiDAR Joint Classification

被引:0
|
作者
Ge, Haimiao [1 ,2 ]
Wang, Liguo [3 ]
Pan, Haizhu [1 ,2 ]
Liu, Yanzhong [1 ,2 ]
Li, Cheng [1 ,2 ]
Lv, Dan [1 ,2 ]
Ma, Huiyu [1 ,2 ]
机构
[1] Qiqihar Univ, Coll Comp & Control Engn, Qiqihar 161000, Peoples R China
[2] Qiqihar Univ, Heilongjiang Key Lab Big Data Network Secur Detect, Qiqihar 161000, Peoples R China
[3] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
基金
中国国家自然科学基金;
关键词
HSI and LiDAR fusion classification; convolutional neural network; multi-scale feature extraction; cross attention;
D O I
10.3390/rs16214073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, deep learning-based multi-source data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, has gained significant attention in the field of remote sensing. However, the traditional convolutional neural network fusion techniques always provide poor extraction of discriminative spatial-spectral features from diversified land covers and overlook the correlation and complementarity between different data sources. Furthermore, the mere act of stacking multi-source feature embeddings fails to represent the deep semantic relationships among them. In this paper, we propose a cross attention-based multi-scale convolutional fusion network for HSI-LiDAR joint classification. It contains three major modules: spatial-elevation-spectral convolutional feature extraction module (SESM), cross attention fusion module (CAFM), and classification module. In the SESM, improved multi-scale convolutional blocks are utilized to extract features from HSI and LiDAR to ensure discriminability and comprehensiveness in diversified land cover conditions. Spatial and spectral pseudo-3D convolutions, pointwise convolutions, residual aggregation, one-shot aggregation, and parameter-sharing techniques are implemented in the module. In the CAFM, a self-designed local-global cross attention block is utilized to collect and integrate relationships of the feature embeddings and generate joint semantic representations. In the classification module, average polling, dropout, and linear layers are used to map the fused semantic representations to the final classification results. The experimental evaluations on three public HSI-LiDAR datasets demonstrate the competitiveness of the proposed network in comparison with state-of-the-art methods.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Convolutional Neural Network Based on Multiple Attention Mechanisms for Hyperspectral and LiDAR Classification
    Wang, Yingying
    Wang, Kun
    Ding, Zhiming
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 274 - 287
  • [32] Diagnosis of Alzheimer's disease via an attention-based multi-scale convolutional neural network
    Liu, Zhenbing
    Lu, Haoxiang
    Pan, Xipeng
    Xu, Mingchang
    Lan, Rushi
    Luo, Xiaonan
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [33] Chicken Image Segmentation via Multi-Scale Attention-Based Deep Convolutional Neural Network
    Li, Wei
    Xiao, Yang
    Song, Xibin
    Lv, Na
    Jiang, Xinbo
    Huang, Yan
    Peng, Jingliang
    IEEE ACCESS, 2021, 9 : 61398 - 61407
  • [34] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE RESIDUAL ATTENTION NETWORK
    Xie, Wen
    Wu, Qinzhe
    Ren, Wen
    Zhang, Yuzhuo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7649 - 7652
  • [35] Tool Wear Prediction Based on a Multi-Scale Convolutional Neural Network with Attention Fusion
    Huang, Qingqing
    Wu, Di
    Huang, Hao
    Zhang, Yan
    Han, Yan
    INFORMATION, 2022, 13 (10)
  • [36] GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
    Liu, Xiaohong
    Ma, Yongrui
    Shi, Zhihao
    Chen, Jun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7313 - 7322
  • [37] Multi-Scale Spatial-Spectral Attention-Based Neural Architecture Search for Hyperspectral Image Classification
    Song, Yingluo
    Wang, Aili
    Zhao, Yan
    Wu, Haibin
    Iwahori, Yuji
    ELECTRONICS, 2023, 12 (17)
  • [38] Efficient evolutionary multi-scale spectral-spatial attention fusion network for hyperspectral image classification
    Zhang, Mengxuan
    Lei, Zhikun
    Liu, Long
    Ma, Kun
    Shang, Ronghua
    Jiao, Licheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [39] Multi-scale Attention Convolutional Neural Network for time series classification
    Chen, Wei
    Shi, Ke
    NEURAL NETWORKS, 2021, 136 (136) : 126 - 140
  • [40] BACNN: Multi-scale feature fusion-based bilinear attention convolutional neural network for wood NIR classification
    Wan, Zihao
    Yang, Hong
    Xu, Jipan
    Mu, Hongbo
    Qi, Dawei
    JOURNAL OF FORESTRY RESEARCH, 2024, 35 (01)