Numerical simulation on maximum likelihood estimation of diffusion processes

被引:0
|
作者
Wang, Jingyu [1 ,2 ]
Lai, Junfeng [1 ]
Yan, Zaizai [1 ]
机构
[1] Science College, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
[2] Science College, Qiqihaer University, Qiqihaer, Heilongjiang, China
来源
Metallurgical and Mining Industry | 2015年 / 7卷 / 03期
关键词
Differential equations - Numerical methods - Parameter estimation - Stochastic systems - Stochastic models - Diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider parametric estimation problem of a continuous type stochastic mathematical model (stochastic differential equation) in a wide engineering field. On analyzing the probability characteristics of process, the density function is determined by using Ito differential law. The maximum-likelihood estimating (MLE) algorithm of unknown parameter is obtained. The approximation is calculated by using numerical solution techniques for diffusion process. Finally, we consider three methods for solving the Cox-Ingersoll-Ross process as a numerical example. © Metallurgical and Mining Industry, 2015.
引用
收藏
页码:244 / 249
相关论文
共 50 条
  • [41] MAXIMUM-LIKELIHOOD ESTIMATION FOR BRANCHING-PROCESSES WITH IMMIGRATION
    BHAT, BR
    ADKE, SR
    ADVANCES IN APPLIED PROBABILITY, 1981, 13 (03) : 498 - 509
  • [42] Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type
    Valdivieso L.
    Schoutens W.
    Tuerlinckx F.
    Statistical Inference for Stochastic Processes, 2009, 12 (1) : 1 - 19
  • [43] Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    Zhang, Guannan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 588 - 596
  • [44] Maximum likelihood estimation for multiscale Ornstein-Uhlenbeck processes
    Zhang, Fan
    Papavasiliou, Anastasia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (06) : 807 - 835
  • [45] Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice
    Stroud, Jonathan R.
    Stein, Michael L.
    Lysen, Shaun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 108 - 120
  • [46] Faster Maximum Likelihood Estimation Algorithms for Markovian Arrival Processes
    Okamura, Hiroyuki
    Dohi, Tadashi
    SIXTH INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2009, : 73 - 82
  • [47] MAXIMUM LIKELIHOOD ESTIMATION IN MULTITYPE BRANCHING PROCESSES WITH TERMINAL TYPES
    Daskalova, Nina
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (05): : 575 - 580
  • [48] MAXIMUM-LIKELIHOOD-ESTIMATION FOR GALTON-WATSON PROCESSES
    EPPS, TW
    SENETA, E
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (03) : 733 - 748
  • [49] MAXIMUM-LIKELIHOOD-ESTIMATION FOR STATIONARY POINT-PROCESSES
    PURI, ML
    TUAN, PD
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (03) : 541 - 545
  • [50] Maximum likelihood estimation for Gaussian processes under inequality constraints
    Bachoc, Francois
    Lagnoux, Agnes
    Lopez-Lopera, Andres F.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 2921 - 2969