Numerical simulation on maximum likelihood estimation of diffusion processes

被引:0
|
作者
Wang, Jingyu [1 ,2 ]
Lai, Junfeng [1 ]
Yan, Zaizai [1 ]
机构
[1] Science College, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
[2] Science College, Qiqihaer University, Qiqihaer, Heilongjiang, China
来源
Metallurgical and Mining Industry | 2015年 / 7卷 / 03期
关键词
Differential equations - Numerical methods - Parameter estimation - Stochastic systems - Stochastic models - Diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider parametric estimation problem of a continuous type stochastic mathematical model (stochastic differential equation) in a wide engineering field. On analyzing the probability characteristics of process, the density function is determined by using Ito differential law. The maximum-likelihood estimating (MLE) algorithm of unknown parameter is obtained. The approximation is calculated by using numerical solution techniques for diffusion process. Finally, we consider three methods for solving the Cox-Ingersoll-Ross process as a numerical example. © Metallurgical and Mining Industry, 2015.
引用
收藏
页码:244 / 249
相关论文
共 50 条
  • [31] MAXIMUM-LIKELIHOOD-ESTIMATION FOR NONCAUSAL AUTOREGRESSIVE PROCESSES
    BREIDT, FJ
    DAVIS, RA
    LII, KS
    ROSENBLATT, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) : 175 - 198
  • [32] Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes
    Cai, Chun-Hao
    Huang, Yin-Zhong
    Sun, Lin
    Xiao, Wei-Lin
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [33] RECURSIVE MAXIMUM-LIKELIHOOD ESTIMATION OF AUTOREGRESSIVE PROCESSES
    KAY, SM
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (01): : 56 - 65
  • [34] ACCELERATING MAXIMUM LIKELIHOOD ESTIMATION FOR HAWKES POINT PROCESSES
    Guo, Ce
    Luk, Wayne
    2013 23RD INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2013) PROCEEDINGS, 2013,
  • [35] Maximum Likelihood Estimation for Discrete Multivariate Vasicek Processes
    Pokojovy, Michael
    Nkum, Ebenezer
    Fullerton, Thomas M., Jr.
    NEXT GENERATION DATA SCIENCE, SDSC 2023, 2024, 2113 : 3 - 18
  • [36] MAXIMUM-LIKELIHOOD ESTIMATION OF DISCRETE CONTROL PROCESSES
    RUST, J
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) : 1006 - 1024
  • [37] Penalised maximum likelihood estimation for fractional Gaussian processes
    Lieberman, O
    BIOMETRIKA, 2001, 88 (03) : 888 - 894
  • [38] Numerical methods for the maximum likelihood estimation of Weibull parameters
    Gupta, PL
    Gupta, RC
    Lvin, SJ
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 62 (1-2) : 1 - 7
  • [39] Asymptotic Properties of Maximum Likelihood Estimation: Parameterized Diffusion in a Manifold
    Said, S.
    Manton, J. H.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (02) : 298 - 327
  • [40] Maximum penalized quasi-likelihood estimation of the diffusion function
    Hamrick, Jeff
    Huang, Yifei
    Kardaras, Constantinos
    Taqqu, Murad S.
    QUANTITATIVE FINANCE, 2011, 11 (11) : 1675 - 1684