Two efficient iteration methods for solving the absolute value equations

被引:0
|
作者
Yu, Xiaohui [1 ]
Wu, Qingbiao [2 ]
机构
[1] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute value equation; SOR-like method; Convergence analysis; Optimal parameters; COMPLEMENTARITY;
D O I
10.1016/j.apnum.2024.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 50 条
  • [31] On rediscovered iteration methods for solving equations
    Univ of Nis, Nis, Yugoslavia
    J Comput Appl Math, 2 (275-284):
  • [32] Efficient Splitting Methods for Solving Tensor Absolute Value Equation
    Ning, Jing
    Xie, Yajun
    Yao, Jie
    SYMMETRY-BASEL, 2022, 14 (02):
  • [33] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    Wang, An
    Cao, Yang
    Chen, Jing-Xian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (01) : 216 - 230
  • [34] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [35] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Li, Xu
    Li, Yi-Xin
    Dou, Yan
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 695 - 710
  • [36] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Xu Li
    Yi-Xin Li
    Yan Dou
    Numerical Algorithms, 2023, 93 : 695 - 710
  • [37] Solving Nonlinear Absolute Value Equations
    Daniilidis, Aris
    Haddou, Mounir
    Lê, Trí Minh
    Ley, Olivier
    arXiv,
  • [38] On rediscovered iteration methods far solving equations
    Petkovic, M
    Herceg, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (02) : 275 - 284
  • [39] The Picard–HSS iteration method for absolute value equations
    Davod Khojasteh Salkuyeh
    Optimization Letters, 2014, 8 : 2191 - 2202
  • [40] Relaxed-based matrix splitting methods for solving absolute value equations
    Juan Song
    Yongzhong Song
    Computational and Applied Mathematics, 2023, 42