Two efficient iteration methods for solving the absolute value equations

被引:0
|
作者
Yu, Xiaohui [1 ]
Wu, Qingbiao [2 ]
机构
[1] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute value equation; SOR-like method; Convergence analysis; Optimal parameters; COMPLEMENTARITY;
D O I
10.1016/j.apnum.2024.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 50 条
  • [21] An Efficient Neural Network Model for Solving the Absolute Value Equations
    Mansoori, Amin
    Eshaghnezhad, Mohammad
    Effati, Sohrab
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (03) : 391 - 395
  • [22] An improved two-sweep iteration method for absolute value equations
    Hongbing Zhang
    Yanjun Zhang
    Yajing Li
    Hongtao Fan
    Computational and Applied Mathematics, 2022, 41
  • [23] An improved two-sweep iteration method for absolute value equations
    Zhang, Hongbing
    Zhang, Yanjun
    Li, Yajing
    Fan, Hongtao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [24] Numerical Solution of the Absolute Value Equations Using Two Matrix Splitting Fixed Point Iteration Methods
    Ali, Rashid
    Ali, Asad
    Alam, Mohammad Mahtab
    Mohamed, Abdullah
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [26] New iterative methods for solving generalized absolute value equations
    Ebadi, Ghodrat
    Seifollahzadeh, Somayeh
    Vuik, Cornelis
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [27] Flexible Operator Splitting Methods for Solving Absolute Value Equations
    Chen, Yongxin
    Han, Deren
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [28] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [29] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826
  • [30] The study of new fixed-point iteration schemes for solving absolute value equations
    Ali, Rashid
    Zhang, Zhao
    Awwad, Fuad A.
    HELIYON, 2024, 10 (14)