SEFNN-A feed-forward neural network design algorithm based on structure evolution

被引:2
|
作者
National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China [1 ]
不详 [2 ]
机构
来源
Jisuanji Yanjiu yu Fazhan | 2006年 / 10卷 / 1713-1718期
关键词
Diagnosis - Encoding (symbols) - Functions - Genetic algorithms - Global optimization - Mathematical operators - Pulmonary diseases - Random processes - Speed;
D O I
10.1360/crad20061006
中图分类号
学科分类号
摘要
Genetic algorithm is a random search algorithm that simulates natural selection and evolution. It searches through the total solution space and can find the optimal solution globally over a domain. Recently, the popular encoding scheme is to encode the structure and weights, etc. into a string, which is not easy for the reservation of sub-structure during the process of genetic evolution. Generally, BP training scheme used in feed-forward neural network is to train all the offspring equally, which obviously wastes resources. A new method named SEFNN is proposed, which uses compact matrix encoding scheme, a new crossover operator, a properly modified mutate operator and rules of training elites. The efficiency of evolutionary feed-forward neural network is improved by properly considering the relationship between genotype and phenotype, thus improving the mutation speed and adopting a scheme of selective training. Experiments show that the proposed method can get good performance in accuracy. It has also found good application in a lung cancer diagnosis system.
引用
收藏
相关论文
共 50 条
  • [31] An Evolutionary Algorithm for Feed-Forward Neural Networks Optimization
    Safi, Youssef
    Bouroumi, Abdelaziz
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 475 - 480
  • [32] Optimizing and Learning Algorithm for Feed-forward Neural Networks
    Bachiller, Pilar
    González, Julia
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2001, 5 (01) : 51 - 57
  • [33] Towards intelligent fiber laser design by using a feed-forward neural network
    Liu, Xinyang
    Gumenyuk, Regina
    ADVANCED LASERS, HIGH-POWER LASERS, AND APPLICATIONS XIV, 2023, 12760
  • [34] On the feed-forward neural network for analyzing pantograph equations
    Az-Zo'bi, Emad A.
    Shah, Rasool
    Alyousef, Haifa A.
    Tiofack, C. G. L.
    El-Tantawy, S. A.
    AIP ADVANCES, 2024, 14 (02)
  • [35] As experiment with feed-forward neural network for speech recognition
    Jelinek, B
    Juhar, J
    Cizmar, A
    STATE OF THE ART IN COMPUTATIONAL INTELLIGENCE, 2000, : 308 - 313
  • [36] An incremental learning preprocessor for feed-forward neural network
    Piyabute Fuangkhon
    Artificial Intelligence Review, 2014, 41 : 183 - 210
  • [37] Finding an Optimal Configuration of the Feed-forward Neural Network
    Strba, Radoslav
    Stolfa, Jakub
    Stolfa, Svatopluk
    INFORMATION MODELLING AND KNOWLEDGE BASES XXVII, 2016, 280 : 199 - 206
  • [38] Enhancing Feed-Forward Neural Network in Image Classification
    Daday, Mark Jovic A.
    Fajardo, Arnel C.
    Medina, Ruji P.
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING AND BIG DATA (ICCBD 2019), 2019, : 86 - 90
  • [39] Application of multi-layer feed-forward neural network in fault diagnosis based on FBP algorithm
    Zhang Bin
    Yan Jun
    Zhang Wei
    PROCEEDINGS OF NINTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, 2008, : 117 - +
  • [40] Response analysis of feed-forward neural network predictors
    Varone, B
    Tanskanen, JMA
    Ovaska, SJ
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3309 - 3312