Towards intelligent fiber laser design by using a feed-forward neural network

被引:0
|
作者
Liu, Xinyang [1 ]
Gumenyuk, Regina [1 ,2 ]
机构
[1] Tampere Univ, Lab Photon, Korkeakoulunkatu 3, Tampere 33720, Finland
[2] Tampere Univ, Tampere Inst Adv Study, Kalevantie 4, Tampere 33100, Finland
关键词
Intelligent laser cavity design; feed-forward neural network; laser output prediction;
D O I
10.1117/12.2686809
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrated a high accuracy prediction of the fiber laser output parameters by using a feed-forward neural network. We explored both the gain and spectral filter parameters to test the prediction performance of the neural network and realized the mapping between cavity parameters and laser output performance. We also investigated how the number of hidden layers could influence the accuracy of prediction. Based on the results, the output spectrum and temporal pulse profiles can be predicted with high accuracy in various fiber laser designs. Our work paves the way to intelligent laser design with ultimate autonomy.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Design of an Interval Feed-Forward Neural Network
    Srivastava, Smriti
    Singh, Madhusudan
    PROCEEDINGS OF THE 2012 FIFTH INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY (ICETET 2012), 2012, : 211 - 215
  • [2] Predicting mode-locked fiber laser output using a feed-forward neural network
    Liu, Xinyang
    Gumenyuk, Regina
    OPTICS CONTINUUM, 2024, 3 (09): : 1652 - 1659
  • [3] Design of a multilayered feed-forward neural network using hypersphere neurons
    Banarer, V
    Perwass, C
    Sommer, G
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 571 - 578
  • [4] Design of resonant metasurface absorber using feed-forward neural network
    Abraray, Abdelghafour
    Baghel, Amit
    Maslovski, Stanislav
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (01)
  • [5] Intelligent process modelling using Feed-Forward Neural Networks
    Gadallah M.H.
    Hamid El-Sayed K.A.
    Hekman K.
    International Journal of Manufacturing Technology and Management, 2010, 19 (3-4) : 238 - 257
  • [6] Temperature Estimation of a PMSM using a Feed-Forward Neural Network
    Schueller, Stephan
    Azeem, Mohammad
    Von Hoegen, Anne
    De Doncker, Rik W.
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [7] Predicting terrain contours using a feed-forward neural network
    Erwin-Wright, S
    Sanders, D
    Chen, S
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2003, 16 (5-6) : 465 - 472
  • [8] Drought forecasting using feed-forward recursive neural network
    Mishra, A. K.
    Desai, V. R.
    ECOLOGICAL MODELLING, 2006, 198 (1-2) : 127 - 138
  • [9] Feed-forward neural network training using sparse representation
    Yang, Jie
    Ma, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 255 - 264
  • [10] COINCIDENT PEAK PREDICTION USING A FEED-FORWARD NEURAL NETWORK
    Dowling, Chase P.
    Kirschen, Daniel
    Zhang, Baosen
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 912 - 916