Direct kinetic loss analysis with hierarchy configuration of catalyst coated membrane in proton exchange membrane water electrolysis cell

被引:0
|
作者
He, Yunlong [1 ]
Feng, Suyang [1 ]
Chen, Hui [2 ]
Liu, Yun [1 ]
Shi, Xiaodong [1 ]
Rao, Peng [1 ]
Li, Jing [1 ]
Wu, Xiao [3 ]
Huang, Shuyi [3 ]
Li, Ke [3 ]
Wang, Hao [4 ]
Tian, Xinlong [1 ]
Kang, Zhenye [1 ,2 ]
机构
[1] Hainan Univ, Sch Marine Sci & Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Hainan, Peoples R China
[2] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[3] Natl Energy Grp Ledong Power Generat Co Ltd, Ledong 572539, Peoples R China
[4] Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Proc, State Key Lab Multiphase Complex Syst, CAS Key Lab Green Proc & Engn,Inst Proc Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Water electrolysis; Hydrogen production; Electrode kinetics; Exchange current density; Degradation; PERFORMANCE; ELECTRODES;
D O I
10.1016/j.fuel.2024.133028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrode kinetics and degradation originations are key factors for proton exchange membrane water electrolyzer (PEMWE). However, it is hard to directly characterize these factors in an operating PEMWE, which is because of the coupled components. In this study, we fabricate a hierarchy configured catalyst coated membrane by implementing voltage sensing wires, which enables the in-situ characterization on each part in a PEMWE. Specially, using the integrated configuration, the voltages on anode and cathode electrode can be measured, which provides a chance for determining the kinetics of the electrode. The exchange current density and charge transfer coefficient could be easily obtained. This integrated hierarchy configuration provides a reliable pathway for developing usable catalyst materials and optimizing catalyst layers. The impedance on an inner component can also be measured, and we find that the kinetics are the main losses for both anode and cathode electrode, which contribute to more than 96.6% to electrode voltage loss in low current density range. Additionally, the technique can monitor the internal voltages in an operating PEMWE, which provides valuable data for performance change diagnostic and analysis. The hierarchy configuration enriches the PEMWE characterization methods, and has great promise for industrial applications due to its easy setup and high feasibility.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst
    Skulimowska, Anita
    Dupont, Marc
    Zaton, Marta
    Sunde, Svein
    Merlo, Luca
    Jones, Deborah J.
    Roziere, Jacques
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (12) : 6307 - 6316
  • [42] Porous Transport Layers with TiC-Coated Microporous Layers for Proton Exchange Membrane Water Electrolysis
    Deng, Tong
    Huang, Henghui
    Fan, Li
    Xu, Shaoyi
    Li, Hui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17075 - 17085
  • [43] Integrated ultra-low PtIr catalyst coated membrane toward efficient proton exchange membrane water electrolyzers
    Qin, Jiaqi
    Lv, Yang
    Han, Guangqi
    Liu, Huiyuan
    Li, Yongpeng
    Zhang, Hongyan
    Zhou, Xiaoyu
    Xing, Keran
    Li, Tiantian
    Sun, Chongyun
    Wang, Chunxiao
    Zhou, Qiang
    Wu, Ren'an
    Wang, Dongqi
    Song, Yujiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [44] Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water
    Su, Hongqian
    Sun, Jindong
    Wang, Caizhu
    Wang, Haofeng
    ULTRASONICS SONOCHEMISTRY, 2024, 108
  • [45] High performance and cost-effective supported IrOx catalyst for proton exchange membrane water electrolysis
    Min, Xiangping
    Shi, Yan
    Lu, Zhuoxin
    Shen, Lisha
    Ogundipe, Taiwo Oladapo
    Gupta, Pralhad
    Wang, Chi
    Guo, Changqing
    Wang, Zhida
    Tan, Hongyi
    Mukerjee, Sanjeevc
    Yan, Changfeng
    ELECTROCHIMICA ACTA, 2021, 385
  • [46] Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis
    Huiyuan Li
    Shu Yuan
    Jiabin You
    Congfan Zhao
    Xiaojing Cheng
    Liuxuan Luo
    Xiaohui Yan
    Shuiyun Shen
    Junliang Zhang
    Nano-Micro Letters, 2025, 17 (1)
  • [47] Experimental analysis of materials in proton exchange membrane electrolysis cells
    Ferriday, T.
    Middleton, P. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (51) : 27656 - 27663
  • [48] Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings
    Oyarce, Alejandro
    Gonzalez, Carlos
    Lima, Raquel Bohn
    Lindstrom, Rake Wreland
    Lagergren, Carina
    Lindbergh, Goran
    ELECTROCHIMICA ACTA, 2014, 116 : 379 - 387
  • [49] Ultrathin Ultralow-Platinum Catalyst Coated Membrane for Proton Exchange Membrane Fuel Cells
    Qin, Jiaqi
    Liu, Huiyuan
    Han, Guangqi
    Lv, Yang
    Wang, Xiandong
    Zhang, Guanghui
    Song, Yujiang
    SMALL, 2023, 19 (21)
  • [50] Ordered Membrane Electrode Assembly with Drastically Enhanced Proton and Mass Transport for Proton Exchange Membrane Water Electrolysis
    Tian, Bin
    Li, Yali
    Liu, Yiyang
    Ning, Fandi
    Dan, Xiong
    Wen, Qinglin
    He, Lei
    He, Can
    Shen, Min
    Zhou, Xiaochun
    NANO LETTERS, 2023, 23 (14) : 6474 - 6481