BotCVD: Visual analysis of DNS traffic for botnet detection

被引:0
|
作者
机构
[1] Jiang, Hongling
[2] Liu, Yiwei
[3] Shao, Xiuli
来源
Jiang, H. (hellojhl@163.com) | 1600年 / Advanced Institute of Convergence Information Technology卷 / 04期
关键词
Cluster computing - Internet protocols;
D O I
10.4156/AISS.vol4.issue8.32
中图分类号
学科分类号
摘要
Botnets become one of the serious threats to the Internet. In this paper, we design a light-weighted approach-BotCVD (Bot Cluster Visual Detector) to detect botnet by visually analyzing DNS traffic. To avoid the confusion of the normal DNS traffic, BotCVD analyzes the features of server-host pairs instead of single hosts. Since bots in the same botnet behave similarly in DNS queries, BotCVD visually cluster server-host pairs by computing the dissimilarity matrix of server-host pairs. Through an ordered dissimilarity image, BotCVD could clearly show botnet clusters and detect the infected hosts and malicious servers. Experimental results on real-world network traces merged with synthetic botnet traces indicate that BotCVD can (i) visualize botnet clusters and (ii) detect botnets with a high detection rate and a low false positive rate.
引用
收藏
相关论文
共 50 条
  • [41] Autocorrelation Analysis of Financial Botnet Traffic
    Nagarajan, Prathiba
    Di Troia, Fabio
    Austin, Thomas H.
    Stamp, Mark
    ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2018, : 599 - 606
  • [42] Detection of fast-flux botnets through DNS traffic analysis
    Soltanaghaei, E.
    Kharrazi, M.
    SCIENTIA IRANICA, 2015, 22 (06) : 2389 - 2400
  • [43] A Conformalized Density-based Clustering Analysis of Malicious Traffic for Botnet Detection
    Kiani, Bahareh Mohammadi
    CONFORMAL AND PROBABILISTIC PREDICTION AND APPLICATIONS, VOL 128, 2020, 128 : 244 - 256
  • [44] Mining agile DNS traffic using graph analysis for cybercrime detection
    Berger, Andreas
    D'Alconzo, Alessandro
    Gansterer, Wilfried N.
    Pescape, Antonio
    COMPUTER NETWORKS, 2016, 100 : 28 - 44
  • [45] Malicious DNS Tunneling Detection in Real-Traffic DNS Data
    Lambion, Danielle
    Josten, Michael
    Olumofin, Femi
    De Cock, Martine
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5736 - 5738
  • [46] Botnet Detection Based On Machine Learning Techniques Using DNS Query Data
    Xuan Dau Hoang
    Quynh Chi Nguyen
    FUTURE INTERNET, 2018, 10 (05)
  • [47] Botnet traffic detection using RPCA and Mahalanobis Distance
    Vilaca, Eduardo S. C.
    Vieira, Thiago P. B.
    de Sousa, Rafael T.
    da Costa, Joao Paulo C. L.
    2019 WORKSHOP ON COMMUNICATION NETWORKS AND POWER SYSTEMS (WCNPS), 2019,
  • [48] Botnet detection via mining of traffic flow characteristics
    Kirubavathi, G.
    Anitha, R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2016, 50 : 91 - 101
  • [49] Detection of DNS Traffic Anomalies in Large Networks
    Cermak, Milan
    Celeda, Pavel
    Vykopal, Jan
    ADVANCES IN COMMUNICATION NETWORKING, 2014, 8846 : 215 - 226
  • [50] Feature Selection Strategies for HTTP Botnet Traffic Detection
    Letteri, Ivan
    Della Penna, Giuseppe
    Caianiello, Pasquale
    2019 4TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (EUROS&PW), 2019, : 202 - 210