Malicious DNS Tunneling Detection in Real-Traffic DNS Data

被引:11
|
作者
Lambion, Danielle [1 ]
Josten, Michael [1 ]
Olumofin, Femi [2 ]
De Cock, Martine [1 ]
机构
[1] Univ Washington, Sch Engn & Technol, Tacoma, WA 98402 USA
[2] Infoblox, Santa Clara, CA USA
关键词
DNS tunneling; random forest; CNN;
D O I
10.1109/BigData50022.2020.9378418
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While originally not intended for data transfer, the Domain Name System (DNS) is currently used to this end anyway, in a process called DNS tunneling (DNST). Malicious users exploit DNST for data exfiltration from infected machines, posing a critical security threat. We train and evaluate state-of-the-art convolutional neural network, random forest, and ensemble classifiers to detect tunneling in DNS traffic. Finally, we assess the classifiers' performance and robustness by exposing them to one day of real-traffic data.
引用
收藏
页码:5736 / 5738
页数:3
相关论文
共 50 条
  • [1] Classifying DNS Tunneling Tools For Malicious DoH Traffic
    Alenezi, Rafa
    Ludwig, Simone A.
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [2] DNS Traffic Analysis for Malicious Domains Detection
    Ghafir, Ibrahim
    Prenosil, Vaclav
    2ND INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN) 2015, 2015, : 613 - 618
  • [3] An Adaptive Malicious Domain Detection Mechanism with DNS Traffic
    ShuoXu
    Li, ShuQin
    Meng, Kun
    Wu, LiJun
    Ding, Meng
    PROCEEDINGS OF 2017 VI INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2017), 2017, : 86 - 91
  • [4] Detecting Malicious Domains by Massive DNS Traffic Data Analysis
    Tian, Shiqi
    Fang, Cheng
    Liu, Jun
    Lei, Zhenming
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 130 - 133
  • [5] MORTON: Detection of Malicious Routines in Large-Scale DNS Traffic
    Daihes, Yael
    Tzaban, Hen
    Nadler, Asaf
    Shabtai, Asaf
    COMPUTER SECURITY - ESORICS 2021, PT I, 2021, 12972 : 736 - 756
  • [6] Malicious DNS Traffic in Tor: Analysis and Countermeasures
    Sonntag, Michael
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2019, : 536 - 543
  • [7] DNS dataset for malicious domains detection
    Marques, Claudio
    Malta, Silvestre
    Magalhaes, Joao Paulo
    DATA IN BRIEF, 2021, 38
  • [8] A Survey on Malicious Domains Detection through DNS Data Analysis
    Zhauniarovich, Yury
    Khalil, Issa
    Yu, Ting
    Dacier, Marc
    ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [9] Detection DNS Tunneling Botnets
    Savenko, Bohdan
    Lysenko, Sergii
    Bobrovnikova, Kira
    Savenko, Oleg
    Markowsky, George
    PROCEEDINGS OF THE THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 1, 2021, : 64 - 69
  • [10] Classifying Malicious Domains using DNS Traffic Analysis
    Mahdavifar, Samaneh
    Maleki, Nasim
    Lashkari, Arash Habibi
    Broda, Matt
    Razavi, Amir H.
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 60 - 67