Pressureless sintering of lithium hydride

被引:0
|
作者
Evans, Peter W. F. [1 ]
Bustillos, Christian G. [1 ]
Charalambous, Harry [1 ]
Wilson-Heid, Alexander E. [1 ]
Shittu, Jibril [1 ]
Swift, Andrew J. [1 ]
Root, Jaben [1 ]
Frane, Wyatt L. Du [1 ]
机构
[1] Lawrence Livermore Natl Lab, Mat Sci Div, Livermore, CA 94550 USA
关键词
Lithium hydride; Pressureless sintering; Master sintering curve; Computed Tomography; HYDROGEN STORAGE; CURVE; LIH; HYDROLYSIS; CERAMICS; TEMPERATURE; DESTABILIZATION; DEHYDROGENATION; FABRICATION; PREDICTION;
D O I
10.1016/j.jeurceramsoc.2024.117152
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium Hydride is a material of growing importance for addressing technological challenges related to nuclear fusion, long-term human space travel, and thermal energy storage. Pressureless sintering provides a straightforward, scalable approach to produce dense LiH parts of all sizes and shapes. Pressed LiH green compacts were sintered at heating rates from 2.5 to 20 degrees C/min to 650 degrees C, yielding densities up to 96 +/- 1.4%, with densification initiating at 500 degrees C. A validated master sintering curve was constructed with a sintering apparent activation energy of 135 kJ/mol. X-ray diffraction and simultaneous thermal analysis revealed Li2O formation from 300 - 550 degrees C and decomposition of LiH into Li metal at 550 degrees C, each reflected as deviations in the master sintering curve. Computed tomography after thermal treatment to 550 degrees C showed the formation of corrosion products, and after thermal treatment to 650 degrees C LiH reduction to Li most significantly at exposed surfaces.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Sintering of B4C by Pressureless Liquid Phase Sintering
    da Rocha, Rosa Maria
    Lourenco de Melo, Francisco Cristovao
    ADVANCED POWDER TECHNOLOGY VII, 2010, 660-661 : 170 - 175
  • [42] Master sintering curve for nanometer TiO2 for pressureless sintering
    Li, Da
    Chen, Shaou
    Sun, Xiquan
    Jing, Yuelin
    Shao, Weiquan
    Zhang, Yongcheng
    Luan, Weina
    Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, 2007, 35 (08): : 1030 - 1034
  • [43] Pressureless sintering of chromium diboride using spark plasma sintering facility
    Sairam, K.
    Sonber, J. K.
    Murthy, T. S. R. Ch.
    Sahu, A. K.
    Bedse, R. D.
    Chakravartty, J. K.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 58 : 165 - 171
  • [44] THE FABRICATION OF O'-SIALON CERAMICS BY PRESSURELESS SINTERING
    TRIGG, MB
    JACK, KH
    JOURNAL OF MATERIALS SCIENCE, 1988, 23 (02) : 481 - 487
  • [45] Pressureless sintering of fluorapatite under oxygen atmosphere
    Ben Ayed, F
    Bouaziz, J
    Bouzouita, K
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (08) : 1069 - 1076
  • [46] Synthesis of Titanium Carbide by Means of Pressureless Sintering
    Kvashina, Tatiana
    Uvarov, Nikolai
    Ukhina, Arina
    CERAMICS-SWITZERLAND, 2020, 3 (03): : 306 - 311
  • [47] Pressureless sintering of beta silicon carbide nanoparticles
    Malinge, Antoine
    Coupe, Aurelie
    Le Petitcorps, Yann
    Pailler, Rene
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (16) : 4393 - 4400
  • [48] The effect of aluminum additive on pressureless sintering of SiC
    H. Ghezelbash
    A. Zeinali
    N. Ehsani
    H. R. Baharvandi
    Journal of the Australian Ceramic Society, 2019, 55 : 903 - 911
  • [49] Synthesis of transparent YIG ceramics by pressureless sintering
    Ikesue, A.
    Aung, Y. L.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (14) : 6762 - 6765
  • [50] Development of microstructure during pressureless sintering of alumina
    Quirmbach, P.
    Wolf, M.
    Brook, R.J.
    Hennicke, H.-W.
    Journal of the European Ceramic Society, 1992, 10 (01) : 51 - 57