Pressureless sintering of lithium hydride

被引:0
|
作者
Evans, Peter W. F. [1 ]
Bustillos, Christian G. [1 ]
Charalambous, Harry [1 ]
Wilson-Heid, Alexander E. [1 ]
Shittu, Jibril [1 ]
Swift, Andrew J. [1 ]
Root, Jaben [1 ]
Frane, Wyatt L. Du [1 ]
机构
[1] Lawrence Livermore Natl Lab, Mat Sci Div, Livermore, CA 94550 USA
关键词
Lithium hydride; Pressureless sintering; Master sintering curve; Computed Tomography; HYDROGEN STORAGE; CURVE; LIH; HYDROLYSIS; CERAMICS; TEMPERATURE; DESTABILIZATION; DEHYDROGENATION; FABRICATION; PREDICTION;
D O I
10.1016/j.jeurceramsoc.2024.117152
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium Hydride is a material of growing importance for addressing technological challenges related to nuclear fusion, long-term human space travel, and thermal energy storage. Pressureless sintering provides a straightforward, scalable approach to produce dense LiH parts of all sizes and shapes. Pressed LiH green compacts were sintered at heating rates from 2.5 to 20 degrees C/min to 650 degrees C, yielding densities up to 96 +/- 1.4%, with densification initiating at 500 degrees C. A validated master sintering curve was constructed with a sintering apparent activation energy of 135 kJ/mol. X-ray diffraction and simultaneous thermal analysis revealed Li2O formation from 300 - 550 degrees C and decomposition of LiH into Li metal at 550 degrees C, each reflected as deviations in the master sintering curve. Computed tomography after thermal treatment to 550 degrees C showed the formation of corrosion products, and after thermal treatment to 650 degrees C LiH reduction to Li most significantly at exposed surfaces.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Towards pressureless sintering of nanocrystalline tungsten
    Li, Xingyu
    Zhang, Lin
    Dong, Yanhao
    Qin, Mingli
    Wei, Zichen
    Que, Zhongyou
    Yang, Junjun
    Qu, Xuanhui
    Li, Ju
    ACTA MATERIALIA, 2021, 220 (220)
  • [32] PRESSURELESS SINTERING OF AIN SIC COMPOSITES
    WEI, WCJ
    LEE, RR
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (11) : 2930 - 2936
  • [33] Pressureless sintering of translucent MgO ceramics
    Chen, Dianying
    Jordan, Eric H.
    Gell, Maurice
    SCRIPTA MATERIALIA, 2008, 59 (07) : 757 - 759
  • [34] Pressureless sintering of calcium alpha sialons
    Ta, W
    Cheng, YB
    Muddle, B
    Hewett, C
    Trigg, M
    NITRIDES AND OXYNITRIDES, 2000, 325-3 : 199 - 205
  • [35] Sintering behaviour and properties of zirconia ceramics prepared by pressureless sintering
    Huang, Weiwei
    Zhou, Ju
    Ren, Chunxiao
    Zhang, Fan
    Tang, Ju
    Omran, Mamdouh
    Chen, Guo
    CERAMICS INTERNATIONAL, 2023, 49 (16) : 27192 - 27200
  • [36] Numerical Simulation and Experimental Analysis for Microwave Sintering Process of Lithium Hydride (LiH)
    Lu, Yuanjia
    Shuai, Maobing
    Gao, Jiyun
    Ye, Xiaolei
    Guo, Shenghui
    Yang, Li
    Huang, Bin
    Zhang, Jiajia
    Hou, Ming
    Gao, Lei
    Zhou, Ziqi
    MATERIALS, 2024, 17 (21)
  • [37] The pressureless sintering and mechanical properties of AlON ceramic
    Zhang, N.
    Liang, B.
    Wang, X. Y.
    Kan, H. M.
    Zhu, K. W.
    Zhao, X. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (19-20): : 6259 - 6262
  • [38] Pressureless sintering of submicron titanium carbide powders
    Fu, Zhezhen
    Koc, Rasit
    CERAMICS INTERNATIONAL, 2017, 43 (18) : 17233 - 17237
  • [39] Role of additives on pressureless sintering of O'Sialon
    Zhong, W
    Rigaud, M
    CANADIAN CERAMICS QUARTERLY-JOURNAL OF THE CANADIAN CERAMIC SOCIETY, 1996, 65 (03): : 205 - 210
  • [40] The effect of aluminum additive on pressureless sintering of SiC
    Ghezelbash, H.
    Zeinali, A.
    Ehsani, N.
    Baharvandi, H. R.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2019, 55 (04) : 903 - 911