An Interpretable Electric Vehicles Battery State of Charge Estimation Using MHDTCN-GRU

被引:0
|
作者
Padmanabhan, N. K. Anantha [1 ]
Rithish, Javvaji R. V. M. [1 ]
Nath, Aneesh G. [2 ]
Singh, Sanjay Kumar [1 ]
Singh, Rajeev Kumar [3 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi 221005, India
[2] TKM Coll Engn, Comp Sci & Engn Dept, Kollam 691005, India
[3] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, India
关键词
State of charge; Estimation; Batteries; Logic gates; Convolution; Convolutional neural networks; Computer architecture; Battery management systems; electric vehicles; multi-head dilated temporal convolutional network (MHDTCN); gated recurrent unit (GRU); state of charge estimation; LITHIUM-ION BATTERIES; MODEL;
D O I
10.1109/TVT.2024.3447228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are the driving force behind electric vehicles and portable electronic devices. Accurate estimation of the state of charge in lithium-ion batteries is crucial for optimizing battery performance and improving energy efficiency. This paper proposes a novel hybrid model that combines a multi-head dilated temporal convolutional network architecture with a gated recurrent unit to anticipate the state of charge levels. The novel multi-head architecture of the dilated temporal convolutional network facilitates simultaneous learning of patterns across different scales, allowing the model to adapt to new patterns quickly. The diverse dilation rates in the dilated temporal convolutional network enhance the model's capability to capture long-term sequences, while the gated recurrent unit focuses on short-term dependencies, offering a versatile state of charge estimation method suitable for various environmental conditions. Additionally, the incorporation of the explainable artificial intelligence technique - Shapley Additive exPlanations aids in achieving global interpretability for state of charge prediction, offering a precise quantification of the influence of individual attributes. Comprehensive experiments were conducted across various temperatures and driving cycles to demonstrate the effectiveness of the proposed model. The computation results indicate the proposed method's adaptability to varying conditions, achieving high estimation accuracy and robustness with a mean absolute percentage error and root mean square percentage error of 0.54% and 0.84%, respectively, along with a parameter count of 3,74,433. Moreover, the proposed architecture enhances state of charge estimation performance compared to existing models across multiple datasets while maintaining a more efficient parameter count.
引用
收藏
页码:18527 / 18538
页数:12
相关论文
共 50 条
  • [1] Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles
    Jimenez-Bermejo, David
    Fraile-Ardanuy, Jesus
    Castano-Solis, Sandra
    Merino, Julia
    Alvaro-Hermana, Roberto
    9TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2018) / THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2018) / AFFILIATED WORKSHOPS, 2018, 130 : 533 - 540
  • [2] Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles
    Xiong, Rui
    Cao, Jiayi
    Yu, Quanqing
    He, Hongwen
    Sun, Fengchun
    IEEE ACCESS, 2018, 6 : 1832 - 1843
  • [3] Estimation of lithium-ion battery state of charge for electric vehicles using a nonlinear state observer
    Sakile, Rajakumar
    Sinha, Umesh Kumar
    ENERGY STORAGE, 2022, 4 (02)
  • [4] State of charge estimation for electric vehicles using random forest
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (05):
  • [5] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Using an Adaptive Joint Algorithm
    Sakile, Rajakumar
    Sinha, Umesh Kumar
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (03)
  • [6] Battery state of charge estimation using temporal convolutional network based on electric vehicles operating data
    Yang, Xueyan
    Hu, Jianyao
    Hu, Guangdi
    Guo, Xi
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [7] State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms
    Chandran, Venkatesan
    Patil, Chandrashekhar K.
    Karthick, Alagar
    Ganeshaperumal, Dharmaraj
    Rahim, Robbi
    Ghosh, Aritra
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01):
  • [8] Estimation of lithium battery state of charge using the LTG-SABO-GRU model
    Xiao, Yanjun
    Song, Weihan
    Liu, Weiling
    Wan, Feng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [9] State of charge and state of health estimation of a lithium-ion battery for electric vehicles: A review
    Belmajdoub, N.
    Lajouad, R.
    El Magri, A.
    Boudoudouh, S.
    IFAC PAPERSONLINE, 2024, 58 (13): : 460 - 465
  • [10] H infinity observer based state of charge estimation for battery packs in electric vehicles
    He, Fengxian
    Shen, W. X.
    Kapoor, A.
    Honnery, Damon
    Dayawansa, Daya
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 694 - 699