Impact of modal gain and waveguide design on two-state lasing in quantum well-dot lasers

被引:0
|
作者
Maximov, M. V. [1 ]
Shernyakov, Yu. m. [2 ]
Kornyshov, G. O. [2 ]
Beckman, A. A. [2 ]
Zubov, F. I. [1 ]
Kharchenko, A. A. [1 ]
Payusov, A. S. [2 ]
Mintairov, S. A. [2 ]
Kalyuzhnyy, N. A. [2 ]
Dubrovskii, V. G. [3 ]
Gordeev, N. Yu. [2 ]
机构
[1] Alferov Univ, St Petersburg 194021, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] St Petersburg State Univ, Fac Phys, St Petersburg 199034, Russia
关键词
THRESHOLD CHARACTERISTICS; SEMICONDUCTOR-LASER; POWER;
D O I
10.1364/OL.532606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the current-controlled lasing switching from the ground state (GS) to the excited state (ES) transition in broad-area (stripe width 100 mu m) InGaAs/GaAs quantum well-dot (QWD) and quantum well (QW) lasers. In the lasers with one QWD layer and a 0.45 mu m-thick GaAs waveguide, pure GS lasing takes place up to an injection current as high as 8 A (40 kA/cm2). In contrast, in QW lasers with a similar design, ES lasing emerges already at 3 A (15 kA/cm2). The ES lasing in the QWD lasers is observed only in the devices with a waveguide thickness of 0.78 mu m that supports a 2nd order transverse mode at the wavelength of the ES transition. Increasing the modal gain in the lasers with 0.78 mu m-thick waveguide by using two QWD layers in the active region suppresses the ES lasing. (c) 2024 Optica Publishing Group. All (AI) training, and similar technologies, are reserved.
引用
收藏
页码:6213 / 6216
页数:4
相关论文
共 50 条
  • [41] Two-state-lasing in InAs/InGaAsP/InP quantum dot microcylinder lasers
    Xiao, Jin-Long
    Xiao, Zhi-Xiong
    Yang, Yue-De
    Luo, Shuai
    Ji, Hai-Ming
    Yang, Tao
    Wada, Osamu
    Huang, Yong-Zhen
    2016 INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2016,
  • [42] Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices
    Roehm, Andre
    Lingnau, Benjamin
    Luedge, Kathy
    APPLIED PHYSICS LETTERS, 2015, 106 (19)
  • [43] Experiments and Simulation of Spectrally-Resolved Static and Dynamic Properties in Quantum Dot Two-State Lasing
    Wu, Der-Chin
    Su, Li-Chieh
    Lin, Yen-Chih
    Mao, Ming-Hua
    Wang, Jyh-Shyang
    Lin, Gray
    Chi, Jim-Y
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (03) : 032101
  • [44] Self-Heating Effect on the Two-State Lasing Behaviors in 1.3-μm InAs-GaAs Quantum-Dot Lasers
    Ji, Hai-Ming
    Yang, Tao
    Cao, Yu-Lian
    Xu, Peng-Fei
    Gu, Yong-Xian
    Wang, Zhan-Guo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (07) : 0721031 - 0721034
  • [45] Dynamic properties of two-state lasing quantum dot laser for external optical feedback resistant applications
    Duan, Jianan
    Zhou, Yueguang
    Huang, Heming
    Dong, Bozhang
    Wang, Cheng
    Grillot, Frederic
    2020 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2020, : 79 - 80
  • [46] Two-state operation of high-power semiconductor lasers with a thick quantum well
    Veselov, D. A.
    Ayusheva, K. R.
    Pikhtin, N. A.
    Lyutetskiy, A. V.
    Slipchenko, S. O.
    Tarasov, I. S.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (16)
  • [47] Power-induced lasing state switching and bistability in a two-state quantum dot laser subject to optical injection
    Jiang, Zaifu
    Wu, Zhengmao
    Jayaprasath, Elumalai
    Yang, Wenyan
    Hu, Chunxia
    Cui, Bing
    Xia, Guangqiong
    OPTICA APPLICATA, 2020, 50 (02) : 257 - 269
  • [48] Multimode lasing characteristics of quantum dot lasers due to inhomogeneously broadened gain
    Pyun, S. H.
    Jeong, W. G.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (02) : 275 - 279
  • [49] Modeling the Simultaneous Two Ground-State Lasing Emissions in Chirped Quantum Dot Lasers
    Lin, Gray
    Dai, Van-Truong
    Lee, Chien-Ping
    2009 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1AND 2, 2009, : 672 - 674
  • [50] Optical Noise of Dual-State Lasing Quantum Dot Lasers
    Zhou, Yueguang
    Duan, Jianan
    Grillot, Frederic
    Wang, Cheng
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2020, 56 (06)