Impact of modal gain and waveguide design on two-state lasing in quantum well-dot lasers

被引:0
|
作者
Maximov, M. V. [1 ]
Shernyakov, Yu. m. [2 ]
Kornyshov, G. O. [2 ]
Beckman, A. A. [2 ]
Zubov, F. I. [1 ]
Kharchenko, A. A. [1 ]
Payusov, A. S. [2 ]
Mintairov, S. A. [2 ]
Kalyuzhnyy, N. A. [2 ]
Dubrovskii, V. G. [3 ]
Gordeev, N. Yu. [2 ]
机构
[1] Alferov Univ, St Petersburg 194021, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] St Petersburg State Univ, Fac Phys, St Petersburg 199034, Russia
关键词
THRESHOLD CHARACTERISTICS; SEMICONDUCTOR-LASER; POWER;
D O I
10.1364/OL.532606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the current-controlled lasing switching from the ground state (GS) to the excited state (ES) transition in broad-area (stripe width 100 mu m) InGaAs/GaAs quantum well-dot (QWD) and quantum well (QW) lasers. In the lasers with one QWD layer and a 0.45 mu m-thick GaAs waveguide, pure GS lasing takes place up to an injection current as high as 8 A (40 kA/cm2). In contrast, in QW lasers with a similar design, ES lasing emerges already at 3 A (15 kA/cm2). The ES lasing in the QWD lasers is observed only in the devices with a waveguide thickness of 0.78 mu m that supports a 2nd order transverse mode at the wavelength of the ES transition. Increasing the modal gain in the lasers with 0.78 mu m-thick waveguide by using two QWD layers in the active region suppresses the ES lasing. (c) 2024 Optica Publishing Group. All (AI) training, and similar technologies, are reserved.
引用
收藏
页码:6213 / 6216
页数:4
相关论文
共 50 条
  • [21] Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region
    Makhov, Ivan
    Ivanov, Konstantin
    Moiseev, Eduard
    Dragunova, Anna
    Fominykh, Nikita
    Shernyakov, Yuri
    Maximov, Mikhail
    Kryzhanovskaya, Natalia
    Zhukov, Alexey
    PHOTONICS, 2023, 10 (03)
  • [22] Saturated Layer Gain in Waveguides With InGaAs Quantum Well-Dot Heterostructures
    Nadtochiy, Alexey M.
    Gordeev, Nikita Yu
    Kharchenko, Anton A.
    Mintairov, Sergey A.
    Kalyuzhnyy, Nikolay A.
    Berdnikov, Yury S.
    Shernyakov, Yuriy M.
    Maximov, Mikhail, V
    Zhukov, Alexey E.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (23) : 7479 - 7485
  • [23] Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers
    Fry, P.W.
    Harris, L.
    Parnell, S.R.
    Finley, J.J.
    Ashmore, A.D.
    Mowbray, D.J.
    Skolnick, M.S.
    Hopkinson, M.
    Hill, G.
    Clark, J.C.
    1600, American Institute of Physics Inc. (87):
  • [24] Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers
    Fry, PW
    Harris, L
    Parnell, SR
    Finley, JJ
    Ashmore, AD
    Mowbray, DJ
    Skolnick, MS
    Hopkinson, M
    Hill, G
    Clark, JC
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) : 615 - 617
  • [25] Two-state switching and dynamics in quantum dot two-section lasers
    Markus, A.
    Rossetti, M.
    Calligari, V.
    Chek-Al-Kar, D.
    Chen, J. X.
    Fiore, A.
    Scollo, R.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
  • [26] Stability of Optically Injected Two-State Quantum-Dot Lasers
    Meinecke, Stefan
    Lingnau, Benjamin
    Roehm, Andre
    Luedge, Kathy
    ANNALEN DER PHYSIK, 2017, 529 (12)
  • [27] Low-frequency fluctuations in two-state quantum dot lasers
    Viktorov, Evgeny A.
    Mandel, Paul
    O'Driscoll, Ian
    Carroll, Olwen
    Huyet, Guillaume
    Houlihan, John
    Tanguy, Yann
    OPTICS LETTERS, 2006, 31 (15) : 2302 - 2304
  • [28] Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots
    Makhov, Ivan
    Ivanov, Konstantin
    Moiseev, Eduard
    Fominykh, Nikita
    Dragunova, Anna
    Kryzhanovskaya, Natalia
    Zhukov, Alexey
    NANOMATERIALS, 2023, 13 (05)
  • [29] Modelling of the two-state lasing and the turn-on delay in 1.55 μm InAs/InP (113)B quantum dot lasers
    Veselinov, K.
    Grillot, F.
    Bekiarski, A.
    Loualiche, S.
    IEE PROCEEDINGS-OPTOELECTRONICS, 2006, 153 (06): : 308 - 311
  • [30] Nonlinear Dynamics of Two-State Quantum Dot Lasers under Optical Feedback
    Wang, Xiang-Hui
    Wu, Zheng-Mao
    Jiang, Zai-Fu
    Xia, Guang-Qiong
    PHOTONICS, 2021, 8 (08)