On the Melnikov method for fractional-order systems

被引:0
|
作者
Li, Hang [1 ]
Shen, Yongjun [2 ,3 ]
Li, Jian [1 ]
Dong, Jinlu [1 ]
Hong, Guangyang [1 ]
机构
[1] Northeastern Univ, Coll Sci, Key Lab Struct Dynam Liaoning Prov, Shenyang 110819, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Melnikov method; Fractional dynamics; Fractional-order systems; Horseshoe Chaos; Chaos threshold; Homoclinic and Heteroclinic orbit; OSCILLATOR;
D O I
10.1016/j.chaos.2024.115602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to clarifying and introducing the correct application of Melnikov method in fractional dynamics. Attention to the complex dynamics of hyperbolic orbits and to fractional calculus can be, respectively, traced back to Poincare<acute accent>'s attack on the three-body problem a century ago and to the early days of calculus three centuries ago. Nowadays, fractional calculus has been widely applied in modeling dynamic problems across various fields due to its advantages in describing problems with non-locality. Some of these models have also been confirmed to exhibit hyperbolic orbit dynamics, and recently, they have been extensively studied based on Melnikov method, an analytical approach for homoclinic and heteroclinic orbit dynamics. Despite its decade- long application in fractional dynamics, there is a universal problem in these applications that remains to be clarified, i.e., defining fractional-order systems within finite memory boundaries leads to the neglect of perturbation calculation for parts of the stable and unstable manifolds in Melnikov analysis. After clarifying and redefining the problem, a rigorous analytical case is provided for reference. Unlike existing results, the Melnikov criterion here is derived in a globally closed form, which was previously considered unobtainable due to difficulties in the analysis of fractional-order perturbations characterized by convolution integrals with power-law type singular kernels. Finally, numerical methods are employed to verify the derived Melnikov criterion. Overall, the clarification for the problem and the presented case are expected to provide insights for future research in this topic.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [42] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [43] Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay
    Balochian, Saeed
    Rajaee, Nahid
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2018, 7 (03) : 72 - 93
  • [44] Design of Kalman filter for fractional-order systems with correlated fractional-order colored noises
    Gao Z.
    Huang X.-M.
    Chen X.-J.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (07): : 1672 - 1678
  • [45] Fractional-Order Echo State Network Backstepping Control of Fractional-Order Nonlinear Systems
    Liu, Heng
    Shi, Jiangteng
    Cao, Jinde
    Pan, Yongping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 519 - 532
  • [46] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Saleh Sayyad Delshad
    MohammadMostafa Asheghan
    Mohammadtaghi Hamidi Beheshti
    Advances in Difference Equations, 2010
  • [47] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [48] On Class of Fractional-Order Chaotic or Hyperchaotic Systems in the Context of the Caputo Fractional-Order Derivative
    Sene, Ndolane
    Ndiaye, Ameth
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [49] The effect of the fractional-order controller's orders variation on the fractional-order control systems
    Zeng, QS
    Cao, GY
    Zhu, XJ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 367 - 372
  • [50] A fractional-order dependent collocation method with graded mesh for impulsive fractional-order system
    Xiaoting Liu
    Yong Zhang
    HongGuang Sun
    Zhilin Guo
    Computational Mechanics, 2022, 69 : 113 - 131