On the Melnikov method for fractional-order systems

被引:0
|
作者
Li, Hang [1 ]
Shen, Yongjun [2 ,3 ]
Li, Jian [1 ]
Dong, Jinlu [1 ]
Hong, Guangyang [1 ]
机构
[1] Northeastern Univ, Coll Sci, Key Lab Struct Dynam Liaoning Prov, Shenyang 110819, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Melnikov method; Fractional dynamics; Fractional-order systems; Horseshoe Chaos; Chaos threshold; Homoclinic and Heteroclinic orbit; OSCILLATOR;
D O I
10.1016/j.chaos.2024.115602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to clarifying and introducing the correct application of Melnikov method in fractional dynamics. Attention to the complex dynamics of hyperbolic orbits and to fractional calculus can be, respectively, traced back to Poincare<acute accent>'s attack on the three-body problem a century ago and to the early days of calculus three centuries ago. Nowadays, fractional calculus has been widely applied in modeling dynamic problems across various fields due to its advantages in describing problems with non-locality. Some of these models have also been confirmed to exhibit hyperbolic orbit dynamics, and recently, they have been extensively studied based on Melnikov method, an analytical approach for homoclinic and heteroclinic orbit dynamics. Despite its decade- long application in fractional dynamics, there is a universal problem in these applications that remains to be clarified, i.e., defining fractional-order systems within finite memory boundaries leads to the neglect of perturbation calculation for parts of the stable and unstable manifolds in Melnikov analysis. After clarifying and redefining the problem, a rigorous analytical case is provided for reference. Unlike existing results, the Melnikov criterion here is derived in a globally closed form, which was previously considered unobtainable due to difficulties in the analysis of fractional-order perturbations characterized by convolution integrals with power-law type singular kernels. Finally, numerical methods are employed to verify the derived Melnikov criterion. Overall, the clarification for the problem and the presented case are expected to provide insights for future research in this topic.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [22] Robust stability criterion of fractional-order functions for interval fractional-order systems
    Gao, Zhe
    Liao, Xiaozhong
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01): : 60 - 67
  • [23] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Yue Miao
    Zhe Gao
    Chuang Yang
    International Journal of Control, Automation and Systems, 2022, 20 : 1283 - 1293
  • [24] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Miao, Yue
    Gao, Zhe
    Yang, Chuang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (04) : 1283 - 1293
  • [25] Design of a fractional-order fuzzy PI controller for fractional-order chaotic systems
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4825 - 4830
  • [26] Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems
    N'Doye, Ibrahima
    Laleg-Kirati, Taous-Meriem
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3804 - 3809
  • [27] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [28] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Abdolrahman Ramezani
    Behrouz Safarinejadian
    Circuits, Systems, and Signal Processing, 2018, 37 : 3756 - 3784
  • [29] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [30] Fractional-Order Chelyshkov Collocation Method for Solving Systems of Fractional Differential Equations
    Ahmed, A. I.
    Al-Ahmary, T. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022