Advancing Disability Healthcare Solutions Through Privacy-Preserving Federated Learning With Theme Framework

被引:0
|
作者
Alruwaili, Madallah [1 ]
Siddiqi, Muhammad Hameed [1 ]
Idris, Muhammad [2 ]
Alruwaili, Salman [3 ]
Alanazi, Abdullah Saleh [4 ]
Khan, Faheem [5 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[2] Univ libre Bruxelles, Brussels, Belgium
[3] Jouf Univ, Coll Educ, Special Educ Dept, Sakaka, Saudi Arabia
[4] Univ Hail, Coll Educ, Dept Special Educ, Hail, Saudi Arabia
[5] Gachon Univ, Comp Sci Dept, Seongnam, South Korea
关键词
flexible framework; health disability; healthcare; machine learning; metadata management; privacy awareness; self-sovereign identity; trusted framework; verifiable credentials federated learning;
D O I
10.1111/exsy.13807
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of machine learning, particularly federated learning, in collaborative model training, has demonstrated significant potential for enhancing diversity and efficiency in outcomes. In the healthcare domain, particularly healthcare with disabilities, the sensitive nature of data presents a significant challenge as sharing even the computation on these data can risk exposing personal health information. This research addresses the problem of enabling shared model training for healthcare data-particularly with disabilities decreasing the risk of leaking or compromising sensitive information. Technologies such as federated learning provide solution for decentralised model training but fall short in addressing concerns related to trust building, accountability and control over participation and data. We propose a framework that integrates federated learning with advanced identity management as well as privacy and trust management technologies. Our framework called Theme (Trusted Healthcare Machine Learning Environment) leverages digital identities (e.g., W3C decentralised identifiers and verified credentials) and policy enforcements to regulate participation. This is to ensure that only authorised and trusted entities can contribute to the model training. Additionally, we introduce the mechanisms to track contributions per participant and offer the flexibility for participants to opt out of model training at any point. Participants can choose to be either contributors (providers) or consumers (model users) or both, and they can also choose to participate in subset of activities. This is particularly important in healthcare settings, where individuals and healthcare institutions have the flexibility to control how their data are used without compromising the benefits. In summary, this research work contributes to privacy preserving shared model training leveraging federated learning without exposing sensitive data; trust and accountability mechanisms; contribution tracking per participant for accountability and back-tracking; and fine-grained control and autonomy per participant. By addressing the specific needs of healthcare data for people with disabilities or such institutions, the Theme framework offers a robust solution to balance the benefits of shared machine learning with critical need to protecting sensitive data.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] OpenVFL: A Vertical Federated Learning Framework With Stronger Privacy-Preserving
    Yang, Yunbo
    Chen, Xiang
    Pan, Yuhao
    Shen, Jiachen
    Cao, Zhenfu
    Dong, Xiaolei
    Li, Xiaoguo
    Sun, Jianfei
    Yang, Guomin
    Deng, Robert
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9670 - 9681
  • [22] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [23] Privacy-preserving Decentralized Learning Framework for Healthcare System
    Kasyap, Harsh
    Tripathy, Somanath
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [24] AP2FL: Auditable Privacy-Preserving Federated Learning Framework for Electronics in Healthcare
    Yazdinejad, Abbas
    Dehghantanha, Ali
    Srivastava, Gautam
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2527 - 2535
  • [25] Privacy-Preserving Hybrid Federated Learning Framework for Mental Healthcare Applications: Clustered and Quantum Approaches
    Gupta, Arti
    Maurya, Manish Kumar
    Dhere, Khyati
    Chaurasiya, Vijay Kumar
    IEEE ACCESS, 2024, 12 : 145054 - 145068
  • [26] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [27] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [28] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [29] A privacy preserving framework for federated learning in smart healthcare systems
    Wang, Wenshuo
    Li, Xu
    Qiu, Xiuqin
    Zhang, Xiang
    Brusic, Vladimir
    Zhao, Jindong
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [30] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092