Advancing Disability Healthcare Solutions Through Privacy-Preserving Federated Learning With Theme Framework

被引:0
|
作者
Alruwaili, Madallah [1 ]
Siddiqi, Muhammad Hameed [1 ]
Idris, Muhammad [2 ]
Alruwaili, Salman [3 ]
Alanazi, Abdullah Saleh [4 ]
Khan, Faheem [5 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[2] Univ libre Bruxelles, Brussels, Belgium
[3] Jouf Univ, Coll Educ, Special Educ Dept, Sakaka, Saudi Arabia
[4] Univ Hail, Coll Educ, Dept Special Educ, Hail, Saudi Arabia
[5] Gachon Univ, Comp Sci Dept, Seongnam, South Korea
关键词
flexible framework; health disability; healthcare; machine learning; metadata management; privacy awareness; self-sovereign identity; trusted framework; verifiable credentials federated learning;
D O I
10.1111/exsy.13807
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of machine learning, particularly federated learning, in collaborative model training, has demonstrated significant potential for enhancing diversity and efficiency in outcomes. In the healthcare domain, particularly healthcare with disabilities, the sensitive nature of data presents a significant challenge as sharing even the computation on these data can risk exposing personal health information. This research addresses the problem of enabling shared model training for healthcare data-particularly with disabilities decreasing the risk of leaking or compromising sensitive information. Technologies such as federated learning provide solution for decentralised model training but fall short in addressing concerns related to trust building, accountability and control over participation and data. We propose a framework that integrates federated learning with advanced identity management as well as privacy and trust management technologies. Our framework called Theme (Trusted Healthcare Machine Learning Environment) leverages digital identities (e.g., W3C decentralised identifiers and verified credentials) and policy enforcements to regulate participation. This is to ensure that only authorised and trusted entities can contribute to the model training. Additionally, we introduce the mechanisms to track contributions per participant and offer the flexibility for participants to opt out of model training at any point. Participants can choose to be either contributors (providers) or consumers (model users) or both, and they can also choose to participate in subset of activities. This is particularly important in healthcare settings, where individuals and healthcare institutions have the flexibility to control how their data are used without compromising the benefits. In summary, this research work contributes to privacy preserving shared model training leveraging federated learning without exposing sensitive data; trust and accountability mechanisms; contribution tracking per participant for accountability and back-tracking; and fine-grained control and autonomy per participant. By addressing the specific needs of healthcare data for people with disabilities or such institutions, the Theme framework offers a robust solution to balance the benefits of shared machine learning with critical need to protecting sensitive data.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [12] Privacy-preserving federated learning framework in multimedia courses recommendation
    Qin, YangJie
    Li, Ming
    Zhu, Jia
    WIRELESS NETWORKS, 2023, 29 (04) : 1535 - 1544
  • [13] A Privacy-preserving Data Alignment Framework for Vertical Federated Learning
    Gao, Ying
    Xie, Yuxin
    Deng, Huanghao
    Zhu, Zukun
    Zhang, Yiyu
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3419 - 3427
  • [14] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [15] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [16] Privacy-preserving federated learning framework in multimedia courses recommendation
    YangJie Qin
    Ming Li
    Jia Zhu
    Wireless Networks, 2023, 29 : 1535 - 1544
  • [17] Privacy-Preserving Asynchronous Federated Learning Framework in Distributed IoT
    Yan, Xinru
    Miao, Yinbin
    Li, Xinghua
    Choo, Kim-Kwang Raymond
    Meng, Xiangdong
    Deng, Robert H. H.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13281 - 13291
  • [18] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [19] A Hierarchical Asynchronous Federated Learning Privacy-Preserving Framework for IoVs
    Zhou, Rui
    Niu, Xianhua
    Xiong, Ling
    Wang, Yangpeng
    Zhao, Yue
    Yu, Kai
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 99 - 113
  • [20] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    Digital Communications and Networks, 2024, 10 (02) : 355 - 368