Low-Light Image Enhancement Network Based on Multiscale Interlayer Guidance and Reflection Component Fusion

被引:0
|
作者
Yin, Mohan [1 ]
Yang, Jianbai [1 ]
机构
[1] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin 150025, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Image color analysis; Reflectivity; Noise measurement; Lighting; Brightness; Image resolution; Image enhancement; Inter-layer guidance; low-light image enhancement; multi-scale; Retinex; reflectance component; HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; RETINEX;
D O I
10.1109/ACCESS.2024.3461859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images captured under the influence of external factors (such as low light, nighttime, complex weather conditions, etc.) often exhibit unpleasant visual effects. Previous image enhancement methods have overly focused on improving brightness, neglecting the preservation and enhancement of image detail and color features. Therefore, this paper proposes a network with multi-scale interlayer guidance and reflection component fusion (defined as MGRF-Net) is proposed for low-light image enhancement. Among them, the reflection component is obtained from the decomposition sub-network by Retinex decomposition, and is simultaneously enhanced with the low-light image through the multiscale interlayer guidance sub-network, so as to obtain the clear and convergent illuminance estimation and the low-noise reflection component, and finally the two are fused to obtain the final enhanced image. Specifically, the multi-scale inter-layer guidance sub-network introduces three efficient fusion feature modules: the feature guided enhancement module, the feature learning module, and the feature cross-learning module. These modules are respectively used to extract the underlying feature information to guide the upper layer of features for detail enhancement, enhance and converge the guided features of each layer, and preserve the skip connection and up-sampling features in the U-Net structure. Additionally, three feature extraction modules are designed: spatial-channel attention, global feature-extraction block, and multi-scale extraction block to extract local and global features. Experimental results show that the proposed method outperforms other advanced methods in both visual effects and quantitative aspects.
引用
收藏
页码:140185 / 140210
页数:26
相关论文
共 50 条
  • [41] Multi-Modular Network-Based Retinex Fusion Approach for Low-Light Image Enhancement
    Wang, Jiarui
    Sun, Yu
    Yang, Jie
    ELECTRONICS, 2024, 13 (11)
  • [42] JIRE-Net: Low-light image enhancement with joint enhancement network of illumination and reflection maps
    Wang, Yan
    Gao, Guohong
    Zhao, Chenping
    Jia, Xixi
    Wang, Jianping
    Luo, Shousheng
    Li, Zhiyu
    DIGITAL SIGNAL PROCESSING, 2025, 159
  • [43] Attention-based dual-color space fusion network for low-light image enhancement
    Huang, Zhixiong
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [44] Invertible network for unpaired low-light image enhancement
    Jize Zhang
    Haolin Wang
    Xiaohe Wu
    Wangmeng Zuo
    The Visual Computer, 2024, 40 : 109 - 120
  • [45] Generative adversarial network for low-light image enhancement
    Li, Fei
    Zheng, Jiangbin
    Zhang, Yuan-fang
    IET IMAGE PROCESSING, 2021, 15 (07) : 1542 - 1552
  • [46] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744
  • [47] Weight Uncertainty Network for Low-Light Image Enhancement
    Jin, Yutao
    Sun, Yue
    Chen, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 106 - 117
  • [48] Exposure difference network for low-light image enhancement
    Jiang, Shengqin
    Mei, Yongyue
    Wang, Peng
    Liu, Qingshan
    PATTERN RECOGNITION, 2024, 156
  • [49] Multi-scale wavelet feature fusion network for low-light image enhancement
    Wei, Ran
    Wei, Xinjie
    Xia, Shucheng
    Chang, Kan
    Ling, Mingyang
    Nong, Jingxiang
    Xu, Li
    COMPUTERS & GRAPHICS-UK, 2025, 127
  • [50] Cross-level feature adaptive fusion network for low-light image enhancement
    Liang, Liming
    Zhu, Chenkun
    Yang, Yuan
    Li, Renjie
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (06) : 856 - 866