Low-Light Image Enhancement Network Based on Multiscale Interlayer Guidance and Reflection Component Fusion

被引:0
|
作者
Yin, Mohan [1 ]
Yang, Jianbai [1 ]
机构
[1] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin 150025, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Image color analysis; Reflectivity; Noise measurement; Lighting; Brightness; Image resolution; Image enhancement; Inter-layer guidance; low-light image enhancement; multi-scale; Retinex; reflectance component; HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; RETINEX;
D O I
10.1109/ACCESS.2024.3461859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images captured under the influence of external factors (such as low light, nighttime, complex weather conditions, etc.) often exhibit unpleasant visual effects. Previous image enhancement methods have overly focused on improving brightness, neglecting the preservation and enhancement of image detail and color features. Therefore, this paper proposes a network with multi-scale interlayer guidance and reflection component fusion (defined as MGRF-Net) is proposed for low-light image enhancement. Among them, the reflection component is obtained from the decomposition sub-network by Retinex decomposition, and is simultaneously enhanced with the low-light image through the multiscale interlayer guidance sub-network, so as to obtain the clear and convergent illuminance estimation and the low-noise reflection component, and finally the two are fused to obtain the final enhanced image. Specifically, the multi-scale inter-layer guidance sub-network introduces three efficient fusion feature modules: the feature guided enhancement module, the feature learning module, and the feature cross-learning module. These modules are respectively used to extract the underlying feature information to guide the upper layer of features for detail enhancement, enhance and converge the guided features of each layer, and preserve the skip connection and up-sampling features in the U-Net structure. Additionally, three feature extraction modules are designed: spatial-channel attention, global feature-extraction block, and multi-scale extraction block to extract local and global features. Experimental results show that the proposed method outperforms other advanced methods in both visual effects and quantitative aspects.
引用
收藏
页码:140185 / 140210
页数:26
相关论文
共 50 条
  • [31] Low-Light Image Enhancement via Structure Modeling and Guidance
    Xu, Xiaogang
    Wang, Ruixing
    Lu, Jiangbo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9893 - 9903
  • [32] LENFusion: A Joint Low-Light Enhancement and Fusion Network for Nighttime Infrared and Visible Image Fusion
    Chen, Jun
    Yang, Liling
    Liu, Wei
    Tian, Xin
    Ma, Jiayi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [33] DBENet: Dual-Branch Brightness Enhancement Fusion Network for Low-Light Image Enhancement
    Chen, Yongqiang
    Wen, Chenglin
    Liu, Weifeng
    He, Wei
    ELECTRONICS, 2023, 12 (18)
  • [34] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma Hongqiang
    Ma Shiping
    Xu Yuelei
    Zhu Mingming
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [35] Retinex low-light image enhancement network based on attention mechanism
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4235 - 4255
  • [36] Retinex low-light image enhancement network based on attention mechanism
    Xinyu Chen
    Jinjiang Li
    Zhen Hua
    Multimedia Tools and Applications, 2023, 82 : 4235 - 4255
  • [37] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma H.
    Ma S.
    Xu Y.
    Zhu M.
    Guangxue Xuebao/Acta Optica Sinica, 2019, 39 (02):
  • [38] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):
  • [39] Low-Light Image Enhancement Based on Mutual Guidance Between Enhancing Strength and Image Appearance
    Hu, Linlin
    Hao, Shijie
    Guo, Yanrong
    Hong, Richang
    Wang, Meng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 211 - 223
  • [40] Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
    Yu, Wenshuo
    Zhao, Liquan
    Zhong, Tie
    ENTROPY, 2023, 25 (06)