Bearing fault diagnostic framework under unknown working conditions based on condition-guided diffusion model

被引:4
|
作者
Guo, Zhibin [1 ]
Xu, Lefei [1 ]
Zheng, Yuhao [1 ]
Xie, Jingsong [1 ]
Wang, Tiantian [2 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Peoples R China
[2] Hunan Univ, Sch Mech & Vehicle Engn, Changsha 410082, Peoples R China
关键词
Fault diagnosis; Diffusion model; Unseen working conditions; Rotating machinery; Feature embedding; GENERATIVE ADVERSARIAL NETWORKS; NEURAL-NETWORK;
D O I
10.1016/j.measurement.2024.115951
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis is of vital importance in ensuring the safety of smart manufacturing. Current diagnostic methodologies require data spanning various working conditions. However, industrial settings offer scarce bearing failure data, leading to failure or degradation of performance of traditional intelligent diagnostic methods. Obtaining a complete sample of industrial environments is intensive and unrealistic. Acquiring a comprehensive sample of industrial environments is both resource-intensive and impractical. To handle this situation, an unknown condition diagnosis framework based on diffusion model (DiffUCD) is proposed, effectively integrating the generation capability of the diffusion model and learning from the condition-guided information (CGI), Specifically, signals under limited working conditions are gradually convert to noise through a forward noising process. Then, CGDiffusion reconstructs signals from the noise by a reverse denoising process. In addition, a condition-guided embedding UNet (CGE-UNet) structure is designed to extract CGI for noise level prediction during the reverse process. Moreover, an Unsupervised Clustering Filter (UCFilter) is constructed to select the qualified signals after generation. Signals under unknown working condition can be generated with specialized CGI. Ultimately, extensive experiments and validations on two public bearing datasets (SDUST and PU) are carried out, which validate the effectiveness of our method compared with the state-of-the-art baselines and the hyperparameter analysis confirms the advances of DiffUCD.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions
    Wang, Zisheng
    Xuan, Jianping
    Shi, Tielin
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [42] Bearing fault detection system based on a deep diffusion model
    Yau, Her-Terng
    Kuo, Ping-Huan
    Yu, Shang-Yi
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [43] Bearing Fault Diagnosis Under Variable Working Conditions Based on Domain Adaptation Using Feature Transfer Learning
    Tong, Zhe
    Li, Wei
    Zhang, Bo
    Jiang, Fan
    Zhou, Gongbo
    IEEE ACCESS, 2018, 6 : 76187 - 76197
  • [44] Rolling Bearing Fault Diagnosis Based on Domain Adaptation and Preferred Feature Selection under Variable Working Conditions
    Yu, Xiao
    Chen, Wei
    Wu, Chuanlong
    Ding, Enjie
    Tian, Yuanyuan
    Zuo, Haiwei
    Dong, Fei
    SHOCK AND VIBRATION, 2021, 2021
  • [45] Bearing Fault Diagnosis under Variable Working Conditions Based on Deep Residual Shrinkage Networks and Transfer Learning
    Yang, Xinyu
    Chi, Fulin
    Shao, Siyu
    Zhang, Qiang
    JOURNAL OF SENSORS, 2021, 2021
  • [46] Improved Adversarial Transfer Network for Bearing Fault Diagnosis under Variable Working Conditions
    Wang, Jun
    Ahmed, Hosameldin
    Chen, Xuefeng
    Yan, Ruqiang
    Nandi, Asoke K.
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [47] A novel transfer learning method for bearing fault diagnosis under different working conditions
    Zou, Yisheng
    Liu, Yongzhi
    Deng, Jialin
    Jiang, Yuliang
    Zhang, Weihua
    MEASUREMENT, 2021, 171
  • [48] FAULT DIAGNOSIS OF ROLLING BEARING UNDER MARINE NOISY ENVIRONMENTS AND VARYING WORKING CONDITIONS
    Gao, Chao
    Guo, Yongjin
    Han, Bing
    Liang, Xiaofeng
    Wang, Hongdong
    Yi, Hong
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 2, 2023,
  • [49] Class Subdomain Adaptation Network for Bearing Fault Diagnosis Under Variable Working Conditions
    Zhang, Lu
    Li, Hua
    Cui, Jie
    Li, Wei
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] DTM-Bearing: A Novel Framework for Speed-Invariant Bearing Fault Diagnosis Based on Diffusion Transformation Model (DTM)
    Liao, Rijun
    Wang, Chunguang
    Peng, Fuyu
    Liang, Wei
    Zhang, Yijun
    Zhang, Xin
    IEEE ACCESS, 2024, 12 : 8875 - 8888