Bearing fault diagnostic framework under unknown working conditions based on condition-guided diffusion model

被引:4
|
作者
Guo, Zhibin [1 ]
Xu, Lefei [1 ]
Zheng, Yuhao [1 ]
Xie, Jingsong [1 ]
Wang, Tiantian [2 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Peoples R China
[2] Hunan Univ, Sch Mech & Vehicle Engn, Changsha 410082, Peoples R China
关键词
Fault diagnosis; Diffusion model; Unseen working conditions; Rotating machinery; Feature embedding; GENERATIVE ADVERSARIAL NETWORKS; NEURAL-NETWORK;
D O I
10.1016/j.measurement.2024.115951
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis is of vital importance in ensuring the safety of smart manufacturing. Current diagnostic methodologies require data spanning various working conditions. However, industrial settings offer scarce bearing failure data, leading to failure or degradation of performance of traditional intelligent diagnostic methods. Obtaining a complete sample of industrial environments is intensive and unrealistic. Acquiring a comprehensive sample of industrial environments is both resource-intensive and impractical. To handle this situation, an unknown condition diagnosis framework based on diffusion model (DiffUCD) is proposed, effectively integrating the generation capability of the diffusion model and learning from the condition-guided information (CGI), Specifically, signals under limited working conditions are gradually convert to noise through a forward noising process. Then, CGDiffusion reconstructs signals from the noise by a reverse denoising process. In addition, a condition-guided embedding UNet (CGE-UNet) structure is designed to extract CGI for noise level prediction during the reverse process. Moreover, an Unsupervised Clustering Filter (UCFilter) is constructed to select the qualified signals after generation. Signals under unknown working condition can be generated with specialized CGI. Ultimately, extensive experiments and validations on two public bearing datasets (SDUST and PU) are carried out, which validate the effectiveness of our method compared with the state-of-the-art baselines and the hyperparameter analysis confirms the advances of DiffUCD.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A New Framework Based on Supervised Joint Distribution Adaptation for Bearing Fault Diagnosis across Diverse Working Conditions
    Liu, Chengyao
    Dong, Fei
    SHOCK AND VIBRATION, 2024, 2024
  • [32] Bearing fault diagnosis in variable working conditions based on domain adaptation
    Cao, Jie
    Yin, Haonan
    Lei, Xiaogang
    Wang, Jinhua
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (08): : 2382 - 2390
  • [33] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Zhiping Liu
    Peng Zhang
    Yannan Yu
    Mengzhen Li
    Zhuo Zeng
    Journal of Mechanical Science and Technology, 2024, 38 : 1101 - 1111
  • [34] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Liu, Zhiping
    Zhang, Peng
    Yu, Yannan
    Li, Mengzhen
    Zeng, Zhuo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1101 - 1111
  • [35] Cumulative Distribution Sharpness Profiling Based Bearing Fault Diagnosis Framework Under Variable Speed Conditions
    Jahagirdar, Ankush C.
    Gupta, Karunesh Kumar
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 15124 - 15132
  • [36] A Cross Working Condition Multiscale Recursive Feature Fusion Method for Fault Diagnosis of Rolling Bearing in Multiple Working Conditions
    Zhang, Zhiqiang
    Zhou, Funa
    Li, Sijie
    IEEE ACCESS, 2022, 10 : 78502 - 78518
  • [37] A fault diagnosis method based on an improved diffusion model under limited sample conditions
    Wang, Qiushi
    Sun, Zhicheng
    Zhu, Yueming
    Li, Dong
    Ma, Yunbin
    PLOS ONE, 2024, 19 (09):
  • [38] A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network
    An, Zenghui
    Li, Shunming
    Wang, Jinrui
    Jiang, Xingxing
    ISA TRANSACTIONS, 2020, 100 : 155 - 170
  • [39] Deep dynamic adaptation network: a deep transfer learning framework for rolling bearing fault diagnosis under variable working conditions
    Huoyao Xu
    Jie Liu
    Xiangyu Peng
    Junlang Wang
    Chaoming He
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [40] Deep dynamic adaptation network: a deep transfer learning framework for rolling bearing fault diagnosis under variable working conditions
    Xu, Huoyao
    Liu, Jie
    Peng, Xiangyu
    Wang, Junlang
    He, Chaoming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)