Ductility of bulk nanocrystalline and ultrafine grain iron and steel

被引:3
|
作者
Benito J.A. [1 ,2 ]
Tejedor R. [3 ]
Rodríguez-Baracaldo R. [4 ]
Cabrera J.M. [2 ,3 ]
Prado J.M. [2 ,3 ]
机构
[1] Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, 08036, Barcelona
[2] Centre Tecnològic de Manresa, CTM, 08240, Manresa
[3] Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, 08028, Barcelona
[4] Department of Engineering, Universidad Nacional de Colombia, Campus la Nubia, Manizales
关键词
Ductility; Ferrite; Nanostructure; Softening; Strain hardening;
D O I
10.4028/www.scientific.net/MSF.633-634.197
中图分类号
学科分类号
摘要
This paper reviews the ductility of nanostructured and ultrafine iron obtained using a variety of methods. Mechanical milling of powder and subsequent hot consolidation, one of the most popular methods offer high mechanical strength but poor ductility. Improvements made in the consolidation processes and the introduction of final heat treatments, in addition to new approaches such as spark plasma sintering and high pressure torsion, have increased the total plastic strain of nanostructured iron. The development of bimodal structures enables the existence of strain hardening and more uniform deformation. The paper also includes a steel study, which finds that the hardness of milled powder and the role of carbon atoms inside ferrite grains make it more difficult to improve the ductility of nanostructured samples. © (2010) Trans Tech Publications.
引用
收藏
页码:197 / 203
页数:6
相关论文
共 50 条
  • [31] Ductility of bulk nanocrystalline composites and metallic glasses at room temperature
    Fan, C
    Inoue, A
    APPLIED PHYSICS LETTERS, 2000, 77 (01) : 46 - 48
  • [32] A brief overview on grain growth of bulk electrodeposited nanocrystalline nickel and nickel-iron alloys
    Ni, Haitao
    Zhu, Jiang
    Wang, Zhaodong
    Lv, Haiyang
    Su, Yongyao
    Zhang, Xiyan
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2019, 58 (01) : 98 - 106
  • [33] Bulk ultrafine grained/nanocrystalline metals via slow cooling
    Cao, Chezheng
    Yao, Gongcheng
    Jiang, Lin
    Sokoluk, Maximilian
    Wang, Xin
    Ciston, Jim
    Javadi, Abdolreza
    Guan, Zeyi
    De Rosa, Igor
    Xie, Weiguo
    Lavernia, Enrique J.
    Schoenung, Julie M.
    Li, Xiaochun
    SCIENCE ADVANCES, 2019, 5 (08)
  • [34] Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn
    Zhang, X
    Wang, H
    Koch, CC
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2004, 6 (02) : 53 - 93
  • [35] Grain boundary migration in nanocrystalline iron
    Wejrzanowski, T.
    Spychalski, M.
    Pielaszek, R.
    Kurzydlowski, K. J.
    MULTISCALE KINETIC MODELLING OF MATERIALS, 2007, 129 : 145 - 150
  • [36] Tensile and compressive test in nanocrystalline and ultrafine carbon steel
    Rodriguez-Baracaldo, R.
    Benito, J. A.
    Cabrera, J. M.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (17) : 4796 - 4804
  • [37] Flow Behavior of Ultrafine Grain/Nanocrystalline γ-TiAl Based Alloys
    Chen Hua
    Pei Wen
    Gong Xuebo
    Duan Zhenxin
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (11) : 3519 - 3526
  • [38] Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel
    Frontan, Jaime
    Zhang, Yuming
    Dao, Ming
    Lu, Jian
    Galvez, Francisco
    Jerusalem, Antoine
    ACTA MATERIALIA, 2012, 60 (03) : 1353 - 1367
  • [39] Tensile and compressive test in nanocrystalline and ultrafine carbon steel
    R. Rodríguez-Baracaldo
    J. A. Benito
    J. M. Cabrera
    Journal of Materials Science, 2010, 45 : 4796 - 4804
  • [40] Micro-mechanical response of ultrafine grain and nanocrystalline tantalum
    Yang, Wen
    Ruestes, Carlos J.
    Li, Zezhou
    Abad, Oscar Torrents
    Langdon, Terence G.
    Heiland, Birgit
    Koch, Marcus
    Arzt, Eduard
    Meyers, Marc A.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 12 : 1804 - 1815