Bulk ultrafine grained/nanocrystalline metals via slow cooling

被引:65
|
作者
Cao, Chezheng [1 ,2 ]
Yao, Gongcheng [1 ,2 ]
Jiang, Lin [3 ,4 ]
Sokoluk, Maximilian [2 ]
Wang, Xin [3 ]
Ciston, Jim [5 ]
Javadi, Abdolreza [2 ]
Guan, Zeyi [2 ]
De Rosa, Igor [1 ]
Xie, Weiguo [6 ]
Lavernia, Enrique J. [3 ]
Schoenung, Julie M. [3 ]
Li, Xiaochun [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 96297 USA
[4] Thermo Fisher Sci, Mat & Struct Anal, Hillsboro, OR 97124 USA
[5] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA
[6] Univ Exeter, Camborne Sch Mines, Penryn Campus, Penryn TR10 9FE, Cornwall, England
关键词
GRAIN-REFINEMENT; BI ALLOY; NUCLEATION; STRENGTH; ALUMINUM; MAGNESIUM; MICROSTRUCTURE; DEFORMATION; DISPERSION; BEHAVIOR;
D O I
10.1126/sciadv.aaw2398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cooling, nucleation, and phase growth are ubiquitous processes in nature. Effective control of nucleation and phase growth is of significance to yield refined microstructures with enhanced performance for materials. Recent studies reveal that ultrafine grained (UFG)/nanocrystalline metals exhibit extraordinary properties. However, conventional microstructure refinement methods, such as fast cooling and inoculation, have reached certain fundamental limits. It has been considered impossible to fabricate bulk UFG/nanocrystalline metals via slow cooling. Here, we report a new discovery that nanoparticles can refine metal grains to ultrafine/nanoscale by instilling a continuous nucleation and growth control mechanism during slow cooling. The bulk UFG/nanocrystalline metal with nanoparticles also reveals an unprecedented thermal stability. This method overcomes the grain refinement limits and may be extended to any other processes that involve cooling, nucleation, and phase growth for widespread applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimization of strength and ductility in nanocrystalline and ultrafine grained metals
    Koch, CC
    SCRIPTA MATERIALIA, 2003, 49 (07) : 657 - 662
  • [2] ENHANCED DUCTILITY OF NANOCRYSTALLINE AND ULTRAFINE-GRAINED METALS
    Ovid'ko, I. A.
    Langdon, T. G.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2012, 30 (02) : 103 - 111
  • [3] Instabilities and ductility of nanocrystalline and ultrafine-grained metals
    Ma, E
    SCRIPTA MATERIALIA, 2003, 49 (07) : 663 - 668
  • [4] Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn
    Zhang, X
    Wang, H
    Koch, CC
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2004, 6 (02) : 53 - 93
  • [5] Modelling the strength of ultrafine-grained and nanocrystalline fcc metals
    Huang, Mingxin
    Rivera-Diaz-del-Castillo, Pedro E. J.
    Bouaziz, Olivier
    van der Zwaag, Sybrand
    SCRIPTA MATERIALIA, 2009, 61 (12) : 1113 - 1116
  • [6] Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview
    Mishnaevsky, Leon, Jr.
    Levashov, Evgeny
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 96 : 365 - 373
  • [7] On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals
    Guerses, Ercan
    El Sayed, Tamer
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) : 639 - 644
  • [8] Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation
    Tang, Feng
    Schoenung, Julie M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2): : 101 - 103
  • [9] Modeling the mechanical behavior of heterogeneous ultrafine grained polycrystalline and nanocrystalline FCC metals
    Abdul-Latif, A.
    Kerkour-El Miad, A.
    Baleh, R.
    Garmestani, H.
    MECHANICS OF MATERIALS, 2018, 126 : 1 - 12
  • [10] A MODEL OF ENHANCED STRAIN RATE SENSITIVITY IN NANOCRYSTALLINE AND ULTRAFINE-GRAINED METALS
    Sheinerman, A. G.
    Bobylev, S., V
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2018, 57 (01) : 1 - 10