A graph network-based learnable simulator for spatial-temporal prediction of rigid projectile penetration

被引:0
|
作者
Li, Beibei [1 ]
Feng, Bin [1 ]
Chen, Li [1 ]
机构
[1] Southeast Univ, Engn Res Ctr Safety & Protect Explos & Impact, Minist Educ, Nanjing 211189, Peoples R China
关键词
Rigid projectile penetration; Machine learning; Graph neural networks (GNNs); Message passing;
D O I
10.1016/j.ijimpeng.2024.105123
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Predicting plate penetration by rigid projectiles (PPRP) is crucial in terminal ballistics, with broad applications in civil and military engineering. Empirical and analytical methods face challenges in predicting field variables like displacement and stress in target plates. Although numerical methods offer high accuracy, they suffer from low computational efficiency. Herein, we introduce an efficient data-driven machine learning (ML) method based on graph neural networks (GNNs), named PGN, specifically tailored to address the PPRP problem. Unlike traditional ML methods that establish direct input-output mappings, PGN predicts comprehensive spatial-temporal information pertaining to the projectile-target interaction process. A thorough analysis of PGN's performance in terms of accuracy, computational efficiency and generalization ability was performed. Compared to validated results of numerical simulations, PGN maintained high precision with RMSE for displacement, stress, and strain predictions below 0.5 %, 9.5 %, and 2.1 %, respectively. It also achieved R-2 values exceeding 0.92 for the time history of projectile velocity and acceleration, while requiring only 9.8 % of the computation time compared to LS-DYNA. In generalization tests, PGN exhibited remarkable adaptability in tackling challenging scenarios that extend far beyond the training data distribution, with overall RMSE between 11 % and 13 %. Furthermore, we find that the maximum information propagation capacity of a simulated physical system must meet or exceed the information propagation need of the real-world physical phenomenon it aims to replicate. Consequently, an approach was proposed to determine the critical connectivity radius of the massage passing method directly from the wave speed in the target medium, which greatly improved the accuracy and efficiency of PGN.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A Dynamic Graph Convolutional Network Based on Spatial-Temporal Modeling
    Li J.
    Liu Y.
    Zou L.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (04): : 605 - 613
  • [42] A novel spatial-temporal graph convolution network based on temporal embedding graph structure learning for multivariate time series prediction
    Lei, Tianyang
    Li, Jichao
    Yang, Kewei
    Gong, Chang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141
  • [43] Remaining useful life prediction for rotating machinery based on dynamic graph and spatial-temporal network
    Zeng, Xiangyu
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Di
    Wei, Shangwan
    Liu, Yujie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [44] A Spatial-Temporal Dynamic Graph Attention Network Based Method for Sharing Travel Demand Prediction
    Pian W.-G.
    Wu Y.-B.
    Chen M.
    Cai J.-P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (02): : 432 - 439
  • [45] Dynamic graph convolution neural network based on spatial-temporal correlation for air quality prediction
    Dun, Ao
    Yang, Yuning
    Lei, Fei
    ECOLOGICAL INFORMATICS, 2022, 70
  • [46] Causal graph-based spatial-temporal attention network for RUL prediction of complex systems
    Zheng, Shuwen
    Liu, Jie
    Chen, Yunxia
    Fan, Yu
    Xu, Dan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 201
  • [47] Traffic Speed Prediction Based on Spatial-Temporal Dynamic and Static Graph Convolutional Recurrent Network
    Wenxi, Y.A.N.G.
    Ziling, W.A.N.G.
    Tao, C.U.I.
    Yudong, L.U.
    Zhijian, Q.U.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12): : 518 - 529
  • [48] Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network
    Chen, Xiangyu
    Chuai, Gang
    Zhang, Kaisa
    Gao, Weidong
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [49] Train arrival delay prediction based on spatial-temporal graph convolutional network to sequence model
    Li, Jianmin
    Xu, Xinyue
    Shi, Rui
    Ding, Xin
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2399 - 2404
  • [50] Trajectory prediction of cyclist based on spatial-temporal multi-graph network in crowded scenarios
    Li, Meng
    Chen, Tao
    Du, Hao
    ELECTRONICS LETTERS, 2022, 58 (03) : 97 - 99