A graph network-based learnable simulator for spatial-temporal prediction of rigid projectile penetration

被引:0
|
作者
Li, Beibei [1 ]
Feng, Bin [1 ]
Chen, Li [1 ]
机构
[1] Southeast Univ, Engn Res Ctr Safety & Protect Explos & Impact, Minist Educ, Nanjing 211189, Peoples R China
关键词
Rigid projectile penetration; Machine learning; Graph neural networks (GNNs); Message passing;
D O I
10.1016/j.ijimpeng.2024.105123
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Predicting plate penetration by rigid projectiles (PPRP) is crucial in terminal ballistics, with broad applications in civil and military engineering. Empirical and analytical methods face challenges in predicting field variables like displacement and stress in target plates. Although numerical methods offer high accuracy, they suffer from low computational efficiency. Herein, we introduce an efficient data-driven machine learning (ML) method based on graph neural networks (GNNs), named PGN, specifically tailored to address the PPRP problem. Unlike traditional ML methods that establish direct input-output mappings, PGN predicts comprehensive spatial-temporal information pertaining to the projectile-target interaction process. A thorough analysis of PGN's performance in terms of accuracy, computational efficiency and generalization ability was performed. Compared to validated results of numerical simulations, PGN maintained high precision with RMSE for displacement, stress, and strain predictions below 0.5 %, 9.5 %, and 2.1 %, respectively. It also achieved R-2 values exceeding 0.92 for the time history of projectile velocity and acceleration, while requiring only 9.8 % of the computation time compared to LS-DYNA. In generalization tests, PGN exhibited remarkable adaptability in tackling challenging scenarios that extend far beyond the training data distribution, with overall RMSE between 11 % and 13 %. Furthermore, we find that the maximum information propagation capacity of a simulated physical system must meet or exceed the information propagation need of the real-world physical phenomenon it aims to replicate. Consequently, an approach was proposed to determine the critical connectivity radius of the massage passing method directly from the wave speed in the target medium, which greatly improved the accuracy and efficiency of PGN.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multiple Information Spatial-Temporal Attention based Graph Convolution Network for traffic prediction
    Tao, Shiming
    Zhang, Huyin
    Yang, Fei
    Wu, Yonghao
    Li, Cong
    APPLIED SOFT COMPUTING, 2023, 136
  • [22] Based Matrix Fusion Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
    Jing, Xin
    Zhu, Hai
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1171 - 1175
  • [23] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [24] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [25] Spatial-Temporal Attention Network for Crime Prediction with Adaptive Graph Learning
    Sun, Mingjie
    Zhou, Pengyuan
    Tian, Hui
    Liao, Yong
    Xie, Haiyong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 656 - 669
  • [26] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE ACCESS, 2024, 12 : 144725 - 144737
  • [27] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [28] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    HighTechnologyLetters, 2024, 30 (03) : 221 - 230
  • [29] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103
  • [30] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230