A graph network-based learnable simulator for spatial-temporal prediction of rigid projectile penetration

被引:0
|
作者
Li, Beibei [1 ]
Feng, Bin [1 ]
Chen, Li [1 ]
机构
[1] Southeast Univ, Engn Res Ctr Safety & Protect Explos & Impact, Minist Educ, Nanjing 211189, Peoples R China
关键词
Rigid projectile penetration; Machine learning; Graph neural networks (GNNs); Message passing;
D O I
10.1016/j.ijimpeng.2024.105123
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Predicting plate penetration by rigid projectiles (PPRP) is crucial in terminal ballistics, with broad applications in civil and military engineering. Empirical and analytical methods face challenges in predicting field variables like displacement and stress in target plates. Although numerical methods offer high accuracy, they suffer from low computational efficiency. Herein, we introduce an efficient data-driven machine learning (ML) method based on graph neural networks (GNNs), named PGN, specifically tailored to address the PPRP problem. Unlike traditional ML methods that establish direct input-output mappings, PGN predicts comprehensive spatial-temporal information pertaining to the projectile-target interaction process. A thorough analysis of PGN's performance in terms of accuracy, computational efficiency and generalization ability was performed. Compared to validated results of numerical simulations, PGN maintained high precision with RMSE for displacement, stress, and strain predictions below 0.5 %, 9.5 %, and 2.1 %, respectively. It also achieved R-2 values exceeding 0.92 for the time history of projectile velocity and acceleration, while requiring only 9.8 % of the computation time compared to LS-DYNA. In generalization tests, PGN exhibited remarkable adaptability in tackling challenging scenarios that extend far beyond the training data distribution, with overall RMSE between 11 % and 13 %. Furthermore, we find that the maximum information propagation capacity of a simulated physical system must meet or exceed the information propagation need of the real-world physical phenomenon it aims to replicate. Consequently, an approach was proposed to determine the critical connectivity radius of the massage passing method directly from the wave speed in the target medium, which greatly improved the accuracy and efficiency of PGN.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [2] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [3] Graph Spatial-Temporal Transformer Network for Traffic Prediction
    Zhao, Zhenzhen
    Shen, Guojiang
    Wang, Lei
    Kong, Xiangjie
    BIG DATA RESEARCH, 2024, 36
  • [4] Spatial-temporal knowledge graph network for event prediction
    Huai, Zepeng
    Zhang, Dawei
    Yang, Guohua
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 553
  • [5] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [6] Spatial-temporal attention with graph and general neural network-based sign language recognition
    Miah, Abu Saleh Musa
    Hasan, Md. Al Mehedi
    Okuyama, Yuichi
    Tomioka, Yoichi
    Shin, Jungpil
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [7] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [8] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [9] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [10] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108