An empirical investigation into the capabilities of anomaly detection approaches for test smell detection

被引:0
|
作者
Pontillo, Valeria [1 ]
Martins, Luana [2 ]
Machado, Ivan [3 ]
Palomba, Fabio [2 ]
Ferrucci, Filomena [2 ]
机构
[1] Software Languages (SOFT) Lab — Vrije Universiteit Brussel, Belgium
[2] Software Engineering (SeSa) Lab - Department of Computer Science, University of Salerno, Italy
[3] Federal University of Bahia, Salvador, Brazil
关键词
Number:; -; Acronym:; EC; Sponsor: European Commission; BOL0188/2020; FAPESB; Sponsor: Fundação de Amparo à Pesquisa do Estado da Bahia; PIE0002/2022;
D O I
112320
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] APPROACHES TOWARD PHYSICAL AND GENERAL VIDEO ANOMALY DETECTION
    Kart, Laura
    Cohen, Niv
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1785 - 1789
  • [42] A review on statistical approaches for anomaly detection in DDoS attacks
    Nooribakhsh, Mahsa
    Mollamotalebi, Mahdi
    INFORMATION SECURITY JOURNAL, 2020, 29 (03): : 118 - 133
  • [43] Logical Approaches to Anomaly Detection in Industrial Dynamic Processes
    Ilicheva, Vera V.
    Guda, Alexandr N.
    Shevchuk, Petr S.
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 352 - 361
  • [44] Machine Learning Approaches for Anomaly Detection in IoT Networks
    Kumar, Gotte Ranjith
    Kulkarni, Anagha Deepak
    Kumar, B. Santhosh
    Singh, Navdeep
    Revathi, V
    Kumar, T. Ch. Anil
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [45] Deep learning approaches for bad smell detection: a systematic literature review
    Amal Alazba
    Hamoud Aljamaan
    Mohammad Alshayeb
    Empirical Software Engineering, 2023, 28
  • [46] Deep learning approaches for bad smell detection: a systematic literature review
    Alazba, Amal
    Aljamaan, Hamoud
    Alshayeb, Mohammad
    EMPIRICAL SOFTWARE ENGINEERING, 2023, 28 (03)
  • [47] Machine Learning Approaches for Code Smell Detection: A Systematic Literature Review
    Grujić, Katarina-Glorija
    Prokić, Simona
    Kovačević, Aleksandar
    Luburić, Nikola
    Vidaković, Dragan
    Slivka, Jelena
    SSRN, 2022,
  • [48] An Empirical Comparison of the Fault-Detection Capabilities of Internal Oracles
    Yu, Tingting
    Srisa-An, Witawas
    Rothermel, Gregg
    2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE), 2013, : 11 - 20
  • [49] An Investigation of Fake Fingerprint Detection Approaches
    Ahmad, Asraful Syifaa'
    Hassan, Rohayanti
    Othman, Razib M.
    2ND INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY 2017 (ICAST'17), 2017, 1891
  • [50] Fraud detection: A systematic literature review of graph-based anomaly detection approaches
    Pourhabibi, Tahereh
    Ong, Kok-Leong
    Kam, Booi H.
    Boo, Yee Ling
    DECISION SUPPORT SYSTEMS, 2020, 133