An empirical investigation into the capabilities of anomaly detection approaches for test smell detection

被引:0
|
作者
Pontillo, Valeria [1 ]
Martins, Luana [2 ]
Machado, Ivan [3 ]
Palomba, Fabio [2 ]
Ferrucci, Filomena [2 ]
机构
[1] Software Languages (SOFT) Lab — Vrije Universiteit Brussel, Belgium
[2] Software Engineering (SeSa) Lab - Department of Computer Science, University of Salerno, Italy
[3] Federal University of Bahia, Salvador, Brazil
关键词
Number:; -; Acronym:; EC; Sponsor: European Commission; BOL0188/2020; FAPESB; Sponsor: Fundação de Amparo à Pesquisa do Estado da Bahia; PIE0002/2022;
D O I
112320
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Diminishing Empirical Risk Minimization for Unsupervised Anomaly Detection
    Wang, Shaoshen
    Liu, Yanbin
    Chen, Ling
    Zhang, Chengqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] An Empirical Evaluation of Deep Learning for Network Anomaly Detection
    Malaiya, Ritesh K.
    Kwon, Donghwoon
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Ikkyun
    Kim, Jinoh
    IEEE ACCESS, 2019, 7 : 140806 - 140817
  • [33] An Empirical Evaluation of Deep Learning for Network Anomaly Detection
    Malaiya, Ritesh K.
    Kwon, Donghwoon
    Kim, Jinoh
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Ikkyun
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2018, : 893 - 898
  • [34] Automatic Test Smell Detection using Information Retrieval Techniques
    Palomba, Fabio
    Zaidman, Andy
    De Lucia, Andrea
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2018, : 311 - 322
  • [35] Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection
    Fulcini, Tommaso
    Garaccione, Giacomo
    Coppola, Riccardo
    Ardito, Luca
    Torchiano, Marco
    PROCEEDINGS OF THE 13TH INTERNATIONAL WORKSHOP ON AUTOMATING TEST CASE DESIGN, SELECTION AND EVALUATION, A-TEST 2022, 2022, : 17 - 24
  • [36] Software smell detection based on machine learning and its empirical study
    Yin, Yongfeng
    Su, Qingran
    Liu, Lijun
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [37] CERN Investigation of Network Behaviour and Anomaly Detection
    Hulboj, Milosz Marian
    Jurga, Ryszard Erazm
    RECENT ADVANCES IN INTRUSION DETECTION, PROCEEDINGS, 2009, 5758 : 353 - 354
  • [38] Malicious Anomaly Detection Approaches Robustness in Manufacturing ICSs
    Beaudet, Amaury
    Escudero, Cedric
    Zamai, Eric
    IFAC PAPERSONLINE, 2021, 54 (01): : 146 - 151
  • [39] A Review on Statistical Approaches for Anomaly Detection in DDoS Attacks
    Nooribakhsh, Mahsa
    Mollamotalebi, Mahdi
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2018, 12 (06): : 13 - 26
  • [40] Road Anomaly Detection Through Deep Learning Approaches
    Luo, Dawei
    Lu, Jianbo
    Guo, Gang
    IEEE ACCESS, 2020, 8 : 117390 - 117404