Computational analysis for fractional model of coupled Whitham-Broer-Kaup equation

被引:0
|
作者
Singh, Jagdev [1 ,2 ]
Gupta, Arpita [1 ]
Baleanu, Dumitru [3 ]
机构
[1] JECRC Univ, Dept Math, Jaipur 303905, Rajasthan, India
[2] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Whitham-Broer-Kaup equation; Regularized version of Hilfer-Prabhakar derivative; Kharrat-Toma transform; TRAVELING-WAVE SOLUTIONS; HOMOTOPY ANALYSIS METHOD; ORDER;
D O I
10.1016/j.aej.2024.09.061
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research paper, we study a semi analytical technique to solve the nonlinear partial differential equations. This technique is good combination of homotopy analysis method with Kharrat-Toma transform. Also, we present the numerical solution of nonlinear fractional coupled Whitham-Broer-Kaup equation using studied technique. The Whitham-Broer-Kaup model is broadly considered to study the tsunami wave dynamics under gravity. The regularized version of Hilfer-Prabhakar fractional derivative is used to model the problem. Some qualitative properties, existence and uniqueness of the considered model and its solution are also discussed.The obtained solutions are presented graphically to show the efficiency of studied technique. Error analysis tables are also given to demonstrate the accuracy of obtained results.
引用
收藏
页码:613 / 628
页数:16
相关论文
共 50 条
  • [31] THE VARIATIONAL ITERATION METHOD FOR WHITHAM-BROER-KAUP SYSTEM WITH LOCAL FRACTIONAL DERIVATIVES
    Deng, Shuxian
    Ge, Xinxin
    THERMAL SCIENCE, 2022, 26 (03): : 2419 - 2426
  • [32] Exact solutions to the space-time fraction Whitham-Broer-Kaup equation
    Cao, Damin
    Li, Cheng
    He, Fajiang
    MODERN PHYSICS LETTERS B, 2020, 34 (16):
  • [33] An Efficient Technique for Coupled Fractional Whitham-Broer-Kaup Equations Describing the Propagation of Shallow Water Waves
    Veeresha, P.
    Prakasha, D. G.
    Baskonus, Haci Mehmet
    4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 49 - 75
  • [34] Fourier spectral method for the fractional-in-space coupled Whitham-Broer-Kaup equations on unbounded domain
    Zhao, Li-Fang
    Zhang, Wei
    OPEN PHYSICS, 2024, 22 (01):
  • [35] Evolution property of soliton solutions for the Whitham-Broer-Kaup equation and variant Boussinesq equation
    Ji, L
    Xu, YS
    Wu, FM
    CHINESE PHYSICS, 2003, 12 (10): : 1049 - 1053
  • [36] On the linearized Whitham-Broer-Kaup system on bounded domains
    Liverani, L.
    Mammeri, Y.
    Pata, V.
    Quintanilla, R.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [37] Approximate traveling wave solutions for coupled Whitham-Broer-Kaup shallow water
    Ganji, D. D.
    Rokni, Houman B.
    Sfahani, M. G.
    Ganji, S. S.
    ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (7-8) : 956 - 961
  • [38] Extension of the Optimal Auxiliary Function Method to Solve the System of a Fractional-Order Whitham-Broer-Kaup Equation
    Alsheekhhussain, Zainab
    Moaddy, Khaled
    Shah, Rasool
    Alshammari, Saleh
    Alshammari, Mohammad
    Al-Sawalha, M. Mossa
    Alderremy, Aisha Abdullah
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [39] Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations
    Xu, GQ
    Li, ZB
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 549 - 556
  • [40] Numerical Investigation of the Time-Fractional Whitham-Broer-Kaup Equation Involving without Singular Kernel Operators
    Nonlaopon, Kamsing
    Naeem, Muhammad
    Zidan, Ahmed M.
    Shah, Rasool
    Alsanad, Ahmed
    Gumaei, Abdu
    COMPLEXITY, 2021, 2021