MP-FocalUNet: Multiscale parallel focal self-attention U-Net for medical image segmentation

被引:0
|
作者
Wang, Chuan [1 ]
Jiang, Mingfeng [1 ]
Li, Yang [1 ]
Wei, Bo [1 ]
Li, Yongming [2 ]
Wang, Pin [2 ]
Yang, Guang [3 ,4 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing, Peoples R China
[3] Royal Brompton Hosp, Cardiovasc Res Ctr, London SW3 6NP, England
[4] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
关键词
Focal self-attention mechanism; Medical image segmentation; Multiscale; Deep learning;
D O I
10.1016/j.cmpb.2024.108562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Medical image segmentation has been significantly improved in recent years with the progress of Convolutional Neural Networks (CNNs). Due to the inherent limitations of convolutional operations, CNNs perform poorly in learning the correlation information between global and long-range features. To solve this problem, some existing solutions rely on building deep encoders and down-sampling operations, but such methods are prone to produce redundant network structures and lose local details. Therefore, medical image segmentation tasks require better solutions to improve the modeling of the global context, while maintaining a strong grasp of the low-level details. Methods: We propose a novel multiscale parallel branch architecture (MP-FocalUNet). On the encoder side of MPFocalUNet, dual-scale sub-networks are used to extract information of different scales. A cross-scale "Feature Fusion" (FF) module was proposed to explore the potential of dual branch networks and fully utilize feature representations at different scales. On the decoder side, combined with the traditional CNN in parallel, focal selfattention is used for long-distance modeling, which can effectively capture the global dependencies and underlying spatial details in a shallower way. Results: Our proposed method is evaluated on both abdominal organ segmentation datasets and automatic cardiac diagnosis challenge datasets. Our method consistently outperforms several state-of-the-art segmentation methods with an average Dice score of 82.45% (2.68% higher than HC-Net) and 91.44% (0.35% higher than HC-Net) on the abdominal organ datasets and the automatic cardiac diagnosis challenge datasets, respectively. Conclusions: Our MP-FocalUNet is a novel encoder-decoder based multiscale parallel branch Transformer network, which solves the problem of insufficient long-distance modeling in CNNs and fuses image information at different scales. Extensive experiments on abdominal and cardiac medical image segmentation tasks show that our MP-FocalUNet outperforms other state-of-the-art methods. In the future, our work will focus on designing more lightweight Transformer-based models and better learning pixel-level intrinsic structural features generated by patch division in visual Transformers.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SAU-Net: Medical Image Segmentation Method Based on U-Net and Self-Attention
    Zhang S.-J.
    Peng Z.
    Li H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2433 - 2442
  • [2] U-Net Transformer: Self and Cross Attention for Medical Image Segmentation
    Petit, Olivier
    Thome, Nicolas
    Rambour, Clement
    Themyr, Loic
    Collins, Toby
    Soler, Luc
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 267 - 276
  • [3] Multiscale Attention U-Net for Skin Lesion Segmentation
    Alahmadi, Mohammad D.
    IEEE ACCESS, 2022, 10 : 59145 - 59154
  • [4] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [5] Hybrid Swin Deformable Attention U-Net for Medical Image Segmentation
    Wang, Lichao
    Huang, Jiahao
    Xing, Xiaodan
    Yang, Guang
    2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [6] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942
  • [7] Multiscale transunet +  + : dense hybrid U-Net with transformer for medical image segmentation
    Bo Wang
    ·Fan Wang
    Pengwei Dong
    ·Chongyi Li
    Signal, Image and Video Processing, 2022, 16 : 1607 - 1614
  • [8] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810
  • [9] Semantic Segmentation of Aerial Imagery Using U-Net with Self-Attention and Separable Convolutions
    Khan, Bakht Alam
    Jung, Jin-Woo
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [10] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)