3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models

被引:0
|
作者
Zhang, Yanning [1 ,2 ]
Liu, Yujian [3 ]
Shu, Chen [1 ]
Shen, Yang [1 ]
Li, Mengchao [1 ,4 ]
Ma, Nan [5 ]
Zhao, Jinbo [1 ]
机构
[1] Air Force Med Univ, Affiliated Hosp 2, Dept Thorac Surg, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian, Peoples R China
[3] Cent Theater Command Gen Hosp Chinese Peoples Libe, Dept Cardiothorac Surg, Wuhan, Peoples R China
[4] Yanan Univ, Sch Med, Dept Med Genet & Cell Biol, Yanan, Peoples R China
[5] Air Force Med Univ, Affiliated Hosp 2, Dept Ophthalmol, Xian, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bioprinting; bioinks for airways and lungs; tissue engineering; lung disease; trachea; CARTILAGE REGENERATION; MECHANICAL-PROPERTIES; ALVEOLAR EPITHELIUM; ALGINATE HYDROGELS; STEM-CELLS; SCAFFOLDS; TRACHEA; DEFINITIONS; MOBILIZE; PLATFORM;
D O I
10.1177/20417314241309183
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Tissue engineering and in vitro modeling of the airways and lungs in the respiratory system are of substantial research and clinical importance. In vitro airway and lung models aim to improve treatment options for airway and lung repair and advance respiratory pathophysiological research. The construction of biomimetic native airways and lungs with tissue-specific biological, mechanical, and configurable features remains challenging. Bioprinting, an emerging 3D printing technology, is promising for the development of airway, lung, and disease models, allowing the incorporation of cells and biologically active molecules into printed constructs in a precise and reproducible manner to recreate the airways, lung architecture, and in vitro microenvironment. Herein, we present a review of airway and lung bioprinting for applications in tissue engineering and in vitro modeling. The key pathophysiological characteristics of the airway, lung interstitium, and alveoli are described. The bioinks recently used in 3D bioprinting of the airways and lungs are summarized. Furthermore, we propose a bioink categorization based on the structural characteristics of the lungs and airways. Finally, the challenges and opportunities in the research on biofabrication of airways and lungs are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Keynote: Bioprinting 3D in-vitro model for tissue science and engineering
    Sun, W.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 383 - 383
  • [12] 3D Bioprinting of Tissue/Organ Models
    Pati, Falguni
    Gantelius, Jesper
    Svahn, Helene Andersson
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (15) : 4650 - 4665
  • [13] Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering
    Yu, JunJie
    Park, Su A.
    Kim, Wan Doo
    Ha, Taeho
    Xin, Yuan-Zhu
    Lee, JunHee
    Lee, Donghyun
    POLYMERS, 2020, 12 (12) : 1 - 30
  • [14] 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications
    Dell, Annika C.
    Wagner, Grayson
    Own, Jason
    Geibel, John P.
    PHARMACEUTICS, 2022, 14 (12)
  • [15] Hybrid 3D microfluidic bioprinting for the engineering of cancer models and tissue substitutes
    D'Alessandro, Salvatore
    Mohammadi, Sajad
    Iafrate, Lucia
    Bastioli, Marco
    Marcotulli, Martina
    Franco, Silvia
    Palmisano, Biagio
    D'Orazio, Michele
    Mencattini, Arianna
    Angelini, Roberta
    Riminucci, Mara
    Marinozzi, Franco
    Martinelli, Eugenio
    Ruocco, Giancarlo
    Bini, Fabiano
    Cidonio, Gianluca
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [16] Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications
    Zennifer, Allen
    Senthilvelan, Praseetha
    Sethuraman, Swaminathan
    Sundaramurthi, Dhakshinamoorthy
    CARBOHYDRATE POLYMERS, 2021, 256
  • [17] Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications
    Tripathi, Shivi
    Dash, Madhusmita
    Chakraborty, Ruchira
    Lukman, Harri Junaedi
    Kumar, Prasoon
    Hassan, Shabir
    Mehboob, Hassan
    Singh, Harpreet
    Nanda, Himansu Sekhar
    BIOMATERIALS SCIENCE, 2024, 13 (01) : 93 - 129
  • [18] Inkjet 3D bioprinting for tissue engineering and pharmaceutics
    Zhao, Deng-ke
    Xu, He-qi
    Yin, Jun
    Yang, Hua-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (12): : 955 - 973
  • [19] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)
  • [20] Potential of 3D Bioprinting Techniques in Tissue Engineering
    Ko, Yunjeh
    Kim, Chun-Ho
    Kwon, Oh Hyeong
    POLYMER-KOREA, 2022, 46 (03) : 301 - 317