Hybrid 3D microfluidic bioprinting for the engineering of cancer models and tissue substitutes

被引:2
|
作者
D'Alessandro, Salvatore [1 ,2 ]
Mohammadi, Sajad [2 ]
Iafrate, Lucia [2 ]
Bastioli, Marco [2 ]
Marcotulli, Martina [2 ]
Franco, Silvia [3 ]
Palmisano, Biagio [4 ]
D'Orazio, Michele [5 ]
Mencattini, Arianna [5 ]
Angelini, Roberta [3 ]
Riminucci, Mara [4 ]
Marinozzi, Franco [1 ]
Martinelli, Eugenio [5 ]
Ruocco, Giancarlo [2 ]
Bini, Fabiano [1 ]
Cidonio, Gianluca [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dept Mech & Aerosp Engn, Rome, Italy
[2] Italian Inst Technol IIT, Ctr Life Nano & Neuro Sci CLN2S, Rome, Italy
[3] Univ Roma La Sapienza, Inst Complex Syst ISC CNR, Dept Phys, Rome, Italy
[4] Univ Roma La Sapienza, Dept Mol Med, Rome, Italy
[5] Tor Vergata Univ Rome, Dept Informat Engn, Rome, Italy
关键词
3D bioprinting; high-throughput; tissue engineering; gradient; interface; BIOFABRICATION; SCAFFOLDS; THERAPY;
D O I
10.1080/17452759.2024.2419411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D bioprinting is at the forefront of tissue engineering to fabricate complex constructs resembling functional tissues. However, the inability to produce heterogeneous tissues and the lack of spatio-temporal control over the release of bioactive factors are greatly limiting clinical translation. Herein, the combination of 3D bioprinting with high-throughput dispensing using a custom microfluidic system and nanoclay-based inks is presented. This approach was found to enhance printability, retention, and controlled release of bioactive factors. Advanced tissue models were developed to resemble cancer and skeletal tissue, while studying the effect of anti-cancer (Doxorubicin) and pro-osteogenic growth factors (bone morphogenetic protein-2, BMP-2), respectively. The engineering of a new nanoclay ink allowed the sustained release, making it suitable for long-term applications. These findings suggest that by combining 3D bioprinting and high-throughput delivery of nanoclay-based inks a new platform for the engineering of functional tissue constructs can be assembled, offering significant advancements in regenerative medicine.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] 3D bioprinting strategy for engineering vascularized tissue models
    Chae, Suhun
    Ha, Dong-Heon
    Lee, Hyungseok
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 15 - 33
  • [2] Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips
    Radhakrishnan, Janani
    Varadaraj, Sudha
    Dash, Sanat Kumar
    Sharma, Akriti
    Verma, Rama Shanker
    DRUG DISCOVERY TODAY, 2020, 25 (05) : 879 - 890
  • [3] 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid
    Xie, Zelong
    Gao, Ming
    Lobo, Anderson O.
    Webster, Thomas J.
    POLYMERS, 2020, 12 (08)
  • [4] Tissue engineering by decellularization and 3D bioprinting
    Garreta, Elena
    Oria, Roger
    Tarantino, Carolina
    Pla-Roca, Mateu
    Prado, Patricia
    Fernandez-Aviles, Francisco
    Maria Campistol, Josep
    Samitier, Josep
    Montserrat, Nuria
    MATERIALS TODAY, 2017, 20 (04) : 166 - 178
  • [5] 3D bioprinting in cardiac tissue engineering
    Wang, Zihan
    Wang, Ling
    Li, Ting
    Liu, Sitian
    Guo, Baolin
    Huang, Wenhua
    Wu, Yaobin
    THERANOSTICS, 2021, 11 (16): : 7948 - 7969
  • [6] Hydrocolloids for tissue engineering and 3D bioprinting
    Yildirim-Semerci, Ozum
    Onbas, Rabia
    Bilginer-Kartal, Rumeysa
    Arslan-Yildiz, Ahu
    INNOVATION AND EMERGING TECHNOLOGIES, 2024, 11
  • [7] Development of a Robotic 3D Bioprinting and Microfluidic Pumping System for Tissue and Organ Engineering
    Kahin, Kowther
    Khan, Zainab
    Albagami, Malak
    Usman, Sadaf
    Bahanshal, Sarah
    Alwazani, Hibatallah
    Majid, M. A.
    Rauf, Sakandar
    Hauser, Charlotte
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XVII, 2019, 10875
  • [8] Hybrid 3D Bioprinting of Sustainable Biomaterials for Advanced Multiscale Tissue Engineering
    Ma, Xuejiao
    Xu, Mingqi
    Cui, Xiaolin
    Yin, Jun
    Wu, Qian
    SMALL, 2025,
  • [9] 3D Bioprinting of Tissue/Organ Models
    Pati, Falguni
    Gantelius, Jesper
    Svahn, Helene Andersson
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (15) : 4650 - 4665
  • [10] 3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models
    Zhang, Yanning
    Liu, Yujian
    Shu, Chen
    Shen, Yang
    Li, Mengchao
    Ma, Nan
    Zhao, Jinbo
    JOURNAL OF TISSUE ENGINEERING, 2024, 15